During anaerobic fermentation, Saccharomyces cerevisiae releases large amounts of medium-chain fatty acids (MCFAs) and related ethyl esters which are very important for aromatic quality of fermented beverages. The physiological function of ester synthesis is not yet understood. As MCFAs are toxic, their conversion to esters has been proposed to be a detoxification mechanism. Esterases possess ester synthesizing ability. Throughout an anaerobic fermentation of a lipid-free synthetic medium carried out with a S. cerevisiae strain selected for wine making, we have monitored MCFA and ethyl ester production and, at the same time, measured growth and esterasic activity of intact cells. Because no correlation was found between the concentration of each fatty acid and its ethyl ester, there is no evidence that ester synthesis reduces the toxicity of MCFAs. Esterasic activity did not show any correlation with ester synthesis, but it was related to the release of MCFAs. A model is proposed in which ester synthesis is a consequence of the arrest of lipid biosynthesis resulting from a lack of oxygen. Under these conditions, an excess of acyl coenzyme A is produced, and acyl esters are formed as secondary products of reactions aimed at recovering free coenzyme A.

Esterasic activity and release of ethyl esters of medium chain fatty acids by Saccharomyces cerevisiae during anaerobic growth

MARZONA, Mario
1998-01-01

Abstract

During anaerobic fermentation, Saccharomyces cerevisiae releases large amounts of medium-chain fatty acids (MCFAs) and related ethyl esters which are very important for aromatic quality of fermented beverages. The physiological function of ester synthesis is not yet understood. As MCFAs are toxic, their conversion to esters has been proposed to be a detoxification mechanism. Esterases possess ester synthesizing ability. Throughout an anaerobic fermentation of a lipid-free synthetic medium carried out with a S. cerevisiae strain selected for wine making, we have monitored MCFA and ethyl ester production and, at the same time, measured growth and esterasic activity of intact cells. Because no correlation was found between the concentration of each fatty acid and its ethyl ester, there is no evidence that ester synthesis reduces the toxicity of MCFAs. Esterasic activity did not show any correlation with ester synthesis, but it was related to the release of MCFAs. A model is proposed in which ester synthesis is a consequence of the arrest of lipid biosynthesis resulting from a lack of oxygen. Under these conditions, an excess of acyl coenzyme A is produced, and acyl esters are formed as secondary products of reactions aimed at recovering free coenzyme A.
1998
44
1171
1176
yeast; esterase; medium-chain fatty acids; toxicity; ethyl esters; DECANOIC ACIDS; PLASMA-MEMBRANE; BAKERS-YEAST; FERMENTATION; INHIBITION; ETHANOL
BARDI LAURA; CRIVELLI CRISTINA; M. MARZONA
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/7780
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? ND
social impact