We compare two different notions of generic expansions of countable saturated structures. One kind of genericity is related to existential closure, and another is defined via topological properties and Baire category theory. The second type of genericity was first formulated by Truss for automorphisms. We work with a later generalization, due to Ivanov, to finite tuples of predicates and functions. Let N be a countable saturated model of some complete theory T, and let (N,σ) denote an expansion of N to the signature L0 which is a model of some universal theory T0. We prove that when all existentially closed models of T0 have the same existential theory, (N,σ) is Truss generic if and only if (N,σ) is an e-atomic model. When T is ω-categorical and T0 has a model companion Tmc, the e-atomic models are simply the atomic models of Tmc.

Generic expansions of countable structures

ZAMBELLA, Domenico
2012-01-01

Abstract

We compare two different notions of generic expansions of countable saturated structures. One kind of genericity is related to existential closure, and another is defined via topological properties and Baire category theory. The second type of genericity was first formulated by Truss for automorphisms. We work with a later generalization, due to Ivanov, to finite tuples of predicates and functions. Let N be a countable saturated model of some complete theory T, and let (N,σ) denote an expansion of N to the signature L0 which is a model of some universal theory T0. We prove that when all existentially closed models of T0 have the same existential theory, (N,σ) is Truss generic if and only if (N,σ) is an e-atomic model. When T is ω-categorical and T0 has a model companion Tmc, the e-atomic models are simply the atomic models of Tmc.
2012
53
4
511
523
http://de.arxiv.org/abs/1011.0120 , http://projecteuclid.org/euclid.ndjfl/1352383229
generic automorphism, existentially closed structure, comeager conjugacy class
Silvia Barbina; Domenico Zambella
File in questo prodotto:
File Dimensione Formato  
generic expansionsZambella.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 292.91 kB
Formato Adobe PDF
292.91 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/78281
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 2
social impact