The present paper gives an account and quantifies the change in topology induced by small and type II geometric transitions, by introducing the notion of the homological type of a geometric transition. The obtained results agree with, and go further than, most results and estimates, given to date by several authors, both in mathematical and physical literature.

Homological type of geometric transitions

ROSSI, Michele
2011-01-01

Abstract

The present paper gives an account and quantifies the change in topology induced by small and type II geometric transitions, by introducing the notion of the homological type of a geometric transition. The obtained results agree with, and go further than, most results and estimates, given to date by several authors, both in mathematical and physical literature.
2011
151
[324]
[359]
Michele Rossi
File in questo prodotto:
File Dimensione Formato  
10.1007_s10711-010-9537-0.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 550.8 kB
Formato Adobe PDF
550.8 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/78944
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact