In the context of (2+1)--dimensional quantum gravity with negative cosmological constant and topology R x T^2, constant matrix--valued connections generate a q--deformed representation of the fundamental group, and signed area phases relate the quantum matrices assigned to homotopic loops. Some features of the resulting quantum geometry are explored, and as a consequence a quantum version of the Goldman bracket is obtained

Constant connections, quantum holonomies and the Goldman bracket

NELSON, Jeanette Ethel;
2005-01-01

Abstract

In the context of (2+1)--dimensional quantum gravity with negative cosmological constant and topology R x T^2, constant matrix--valued connections generate a q--deformed representation of the fundamental group, and signed area phases relate the quantum matrices assigned to homotopic loops. Some features of the resulting quantum geometry are explored, and as a consequence a quantum version of the Goldman bracket is obtained
2005
9
407
433
http://www.intlpress.com/ATMP/p/2005/ATMP-9-3-407-433.pdf
J. E. NELSON; R.F. PICKEN
File in questo prodotto:
File Dimensione Formato  
atmpfin.pdf

Accesso riservato

Tipo di file: MATERIALE NON BIBLIOGRAFICO
Dimensione 984.62 kB
Formato Adobe PDF
984.62 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/7926
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact