We study the sum of weighted Lebesgue spaces, by considering an abstract measure space (Ω,A, μ) and investigating the main properties of both the Banach space L(Ω) = {u1 + u2 : u1 ∈ Lq1 (Ω) , u2 ∈ Lq2 (Ω)}, Lqi (Ω) := Lqi (Ω, dμ) , and the Nemytski˘ı operator defined on it. Then we apply our general results to prove existence and multiplicity of solutions to a class of nonlinear p-Laplacian equations.
Sum of weighted Lebesgue spaces and nonlinear elliptic equations
BADIALE, Marino;
2011-01-01
Abstract
We study the sum of weighted Lebesgue spaces, by considering an abstract measure space (Ω,A, μ) and investigating the main properties of both the Banach space L(Ω) = {u1 + u2 : u1 ∈ Lq1 (Ω) , u2 ∈ Lq2 (Ω)}, Lqi (Ω) := Lqi (Ω, dμ) , and the Nemytski˘ı operator defined on it. Then we apply our general results to prove existence and multiplicity of solutions to a class of nonlinear p-Laplacian equations.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BPR_sowLs&nee_preprint_cop.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
669.04 kB
Formato
Adobe PDF
|
669.04 kB | Adobe PDF | Visualizza/Apri |
Badiale.Pisani.Rolando_NoDEA.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
475.17 kB
Formato
Adobe PDF
|
475.17 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.