KRIT1 is a gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal intracerebral hemorrhage. Comprehensive analysis of the KRIT1 gene in CCM patients has suggested that KRIT1 functions need to be severely impaired for pathogenesis. However, the molecular and cellular functions of KRIT1 as well as CCM pathogenesis mechanisms are still research challenges. We found that KRIT1 plays an important role in molecular mechanisms involved in the maintenance of the intracellular Reactive Oxygen Species (ROS) homeostasis to prevent oxidative cellular damage. In particular, we demonstrate that KRIT1 loss/down-regulation is associated with a significant increase in intracellular ROS levels. Conversely, ROS levels in KRIT1-/- cells are significantly and dose-dependently reduced after restoration of KRIT1 expression. Moreover, we show that the modulation of intracellular ROS levels by KRIT1 loss/restoration is strictly correlated with the modulation of the expression of the antioxidant protein SOD2 as well as of the transcriptional factor FoxO1, a master regulator of cell responses to oxidative stress and a modulator of SOD2 levels. Furthermore, we show that the KRIT1-dependent maintenance of low ROS levels facilitates the downregulation of cyclin D1 expression required for cell transition from proliferative growth to quiescence. Finally, we demonstrate that the enhanced ROS levels in KRIT1-/- cells are associated with an increased cell susceptibility to oxidative DNA damage and a marked induction of the DNA damage sensor and repair gene Gadd45a. Taken together, our results point to a new model where KRIT1 limits the accumulation of intracellular oxidants and prevent oxidative stress-mediated cellular dysfunction and DNA damage by enhancing the cell capacity to scavenge intracellular ROS through an antioxidant pathway involving FoxO1 and SOD2, thus providing novel and useful insights into the understanding of KRIT1 molecular and cellular functions, and suggesting a novel mechanism for CCM pathogenesis.

KRIT1 helps cells to prevent oxidative stress.

GOITRE, Luca;BALZAC, Fiorella;DEGANI, Simona;RETTA, Saverio Francesco
2010-01-01

Abstract

KRIT1 is a gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal intracerebral hemorrhage. Comprehensive analysis of the KRIT1 gene in CCM patients has suggested that KRIT1 functions need to be severely impaired for pathogenesis. However, the molecular and cellular functions of KRIT1 as well as CCM pathogenesis mechanisms are still research challenges. We found that KRIT1 plays an important role in molecular mechanisms involved in the maintenance of the intracellular Reactive Oxygen Species (ROS) homeostasis to prevent oxidative cellular damage. In particular, we demonstrate that KRIT1 loss/down-regulation is associated with a significant increase in intracellular ROS levels. Conversely, ROS levels in KRIT1-/- cells are significantly and dose-dependently reduced after restoration of KRIT1 expression. Moreover, we show that the modulation of intracellular ROS levels by KRIT1 loss/restoration is strictly correlated with the modulation of the expression of the antioxidant protein SOD2 as well as of the transcriptional factor FoxO1, a master regulator of cell responses to oxidative stress and a modulator of SOD2 levels. Furthermore, we show that the KRIT1-dependent maintenance of low ROS levels facilitates the downregulation of cyclin D1 expression required for cell transition from proliferative growth to quiescence. Finally, we demonstrate that the enhanced ROS levels in KRIT1-/- cells are associated with an increased cell susceptibility to oxidative DNA damage and a marked induction of the DNA damage sensor and repair gene Gadd45a. Taken together, our results point to a new model where KRIT1 limits the accumulation of intracellular oxidants and prevent oxidative stress-mediated cellular dysfunction and DNA damage by enhancing the cell capacity to scavenge intracellular ROS through an antioxidant pathway involving FoxO1 and SOD2, thus providing novel and useful insights into the understanding of KRIT1 molecular and cellular functions, and suggesting a novel mechanism for CCM pathogenesis.
2010
XXI Convegno Annuale ABCD (Associazione di Biologia Cellulare e del Differenziamento) su “Stress cellulare: sopravvivenza e apoptosi”
Urbino (PS)
7-8 Maggio 2010
Atti XXI Convegno Annuale ABCD (Associazione di Biologia Cellulare e del Differenziamento) su “Stress cellulare: sopravvivenza e apoptosi”
ABCD (Associazione di Biologia Cellulare e del Differenziamento)
-
-
http://abcd-it.org/
Goitre L.; Balzac F.; Degani S.; Degan P.; Retta S.F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/83437
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact