The aim of this paper is to present an approach for the study of well posedness for diagonalizable hyperbolic systems of (pseudo)differential equations with characteristics which are not Lipschitz continuous with respect to both the time variable $t$ (locally) and the space variables $x\in \R^n$ for $|x|\to \infty$. We introduce optimal conditions guaranteeing the well-posedness in the scale of the weighted Sobolev spaces $H^{s_1,s_2}(\R^n),$ cf. Introduction, with finite or arbitrarily small loss of regularity. We give explicit examples for ill-possedness of the Cauchy problem in the Schwartz spaces when the hypotheses on the growth for $|x|\to \infty$ fail.

Cauchy problems for hyperbolic systems in $R^n$ with irregular principal symbol in time and for $|x| \rightarrow \infty$.

CAPPIELLO, Marco;
2011-01-01

Abstract

The aim of this paper is to present an approach for the study of well posedness for diagonalizable hyperbolic systems of (pseudo)differential equations with characteristics which are not Lipschitz continuous with respect to both the time variable $t$ (locally) and the space variables $x\in \R^n$ for $|x|\to \infty$. We introduce optimal conditions guaranteeing the well-posedness in the scale of the weighted Sobolev spaces $H^{s_1,s_2}(\R^n),$ cf. Introduction, with finite or arbitrarily small loss of regularity. We give explicit examples for ill-possedness of the Cauchy problem in the Schwartz spaces when the hypotheses on the growth for $|x|\to \infty$ fail.
2011
250
2624
2642
Cauchy problem; Hyperbolic systems; Non-Lipschitz coefficients; Superlinear growth; Global solutions
M. Cappiello; D. Gourdin; T. Gramchev
File in questo prodotto:
File Dimensione Formato  
articolopubblicato.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 411.64 kB
Formato Adobe PDF
411.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
CGGversioneaperTO.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 319.31 kB
Formato Adobe PDF
319.31 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/83453
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact