During the month of 2009 December, the blazar 3C 454.3 became the brightest gamma-ray source in the sky, reaching a peak flux F similar to 2000 x 10(-8) photons cm(-2) s(-1) for E > 100 MeV. Starting in 2009 November intensive multifrequency campaigns monitored the 3C 454 gamma-ray outburst. Here, we report on the results of a two-month campaign involving AGILE, INTEGRAL, Swift/XRT, Swift/BAT, and Rossi XTE for the high-energy observations and Swift/UVOT, KANATA, Goddard Robotic Telescope, and REM for the near-IR/optical/UV data. GASP/WEBT provided radio and additional optical data. We detected a long-term active emission phase lasting similar to 1 month at all wavelengths: in the gamma-ray band, peak emission was reached on 2009 December 2-3. Remarkably, this gamma-ray super-flare was not accompanied by correspondingly intense emission in the optical/UV band that reached a level substantially lower than the previous observations in 2007-2008. The lack of strong simultaneous optical brightening during the super-flare and the determination of the broadband spectral evolution severely constrain the theoretical modeling. We find that the pre- and post-flare broadband behavior can be explained by a one-zone model involving synchrotron self-Compton plus external Compton emission from an accretion disk and a broad-line region. However, the spectra of the 2009 December 2-3 super-flare and of the secondary peak emission on 2009 December 9 cannot be satisfactorily modeled by a simple one-zone model. An additional particle component is most likely active during these states.
The 2009 December Gamma-Ray Flare Of 3c 454.3: The Multifrequency Campaign
FERRARI, Attilio;
2010-01-01
Abstract
During the month of 2009 December, the blazar 3C 454.3 became the brightest gamma-ray source in the sky, reaching a peak flux F similar to 2000 x 10(-8) photons cm(-2) s(-1) for E > 100 MeV. Starting in 2009 November intensive multifrequency campaigns monitored the 3C 454 gamma-ray outburst. Here, we report on the results of a two-month campaign involving AGILE, INTEGRAL, Swift/XRT, Swift/BAT, and Rossi XTE for the high-energy observations and Swift/UVOT, KANATA, Goddard Robotic Telescope, and REM for the near-IR/optical/UV data. GASP/WEBT provided radio and additional optical data. We detected a long-term active emission phase lasting similar to 1 month at all wavelengths: in the gamma-ray band, peak emission was reached on 2009 December 2-3. Remarkably, this gamma-ray super-flare was not accompanied by correspondingly intense emission in the optical/UV band that reached a level substantially lower than the previous observations in 2007-2008. The lack of strong simultaneous optical brightening during the super-flare and the determination of the broadband spectral evolution severely constrain the theoretical modeling. We find that the pre- and post-flare broadband behavior can be explained by a one-zone model involving synchrotron self-Compton plus external Compton emission from an accretion disk and a broad-line region. However, the spectra of the 2009 December 2-3 super-flare and of the secondary peak emission on 2009 December 9 cannot be satisfactorily modeled by a simple one-zone model. An additional particle component is most likely active during these states.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.