Stochastic geometry proves to be a powerful tool for modeling dense wireless networks adopting random MAC protocols such as ALOHA and CSMA. The main strength of this methodology lies in its ability to account for the randomness in the nodes' location jointly with an accurate description at the physical layer, based on the SINR, that allows to consider also random fading on each link. Existing models of CSMA networks adopting the stochastic geometry approach suffer from two important weaknesses: 1) they permit to evaluate only spatial averages of the main performance measures, thus hiding possibly huge discrepancies in the performance achieved by individual nodes; 2) they are analytically tractable only when nodes are distributed over the area according to simple spatial processes (e.g., the Poisson point process). In this paper we show how the stochastic geometry approach can be extended to overcome the above limitations, allowing to obtain node throughput distributions as well as to analyze a significant class of topologies in which nodes are not independently placed.

New insights into the stochastic geometry analysis of dense CSMA networks

GARETTO, MICHELE;
2011-01-01

Abstract

Stochastic geometry proves to be a powerful tool for modeling dense wireless networks adopting random MAC protocols such as ALOHA and CSMA. The main strength of this methodology lies in its ability to account for the randomness in the nodes' location jointly with an accurate description at the physical layer, based on the SINR, that allows to consider also random fading on each link. Existing models of CSMA networks adopting the stochastic geometry approach suffer from two important weaknesses: 1) they permit to evaluate only spatial averages of the main performance measures, thus hiding possibly huge discrepancies in the performance achieved by individual nodes; 2) they are analytically tractable only when nodes are distributed over the area according to simple spatial processes (e.g., the Poisson point process). In this paper we show how the stochastic geometry approach can be extended to overcome the above limitations, allowing to obtain node throughput distributions as well as to analyze a significant class of topologies in which nodes are not independently placed.
2011
INFOCOM 2011. 30th IEEE International Conference on Computer Communications
Shanghai, China
10-15 April 2011
INFOCOM, 2011 Proceedings IEEE
IEEE Computer Society
2642
2650
9781424499199
Fading; Geometry; Interference; Laplace equations; Multiaccess communication; Receivers; Throughput
G. Alfano; M. Garetto; E. Leonardi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/88796
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 40
social impact