We prove a formula expressing the gradient of the phase function of a function $f :\mathbb{R}^d \rightarrow \mathbb{C}$ as a normalized first frequency moment of the Wigner distribution for fixed time. The formula holds when f is the Fourier transform of a distribution of compact support, or when f belongs to a Sobolev space $H^{d/2+1+\epsilon}(\mathbb{R}^d)$ where $\epsilon >0$. The restriction of theWigner distribution to fixed time is well defined provided a certain condition on its wave front set is satisfied. Therefore we first need to study the wave front set of the Wigner distribution of a tempered distribution.

The wave front set of the Wigner Distribution and Instantaneous Frequency

BOGGIATTO, Paolo;OLIARO, Alessandro;WAHLBERG, BENGT PATRIK MARTIN
2012-01-01

Abstract

We prove a formula expressing the gradient of the phase function of a function $f :\mathbb{R}^d \rightarrow \mathbb{C}$ as a normalized first frequency moment of the Wigner distribution for fixed time. The formula holds when f is the Fourier transform of a distribution of compact support, or when f belongs to a Sobolev space $H^{d/2+1+\epsilon}(\mathbb{R}^d)$ where $\epsilon >0$. The restriction of theWigner distribution to fixed time is well defined provided a certain condition on its wave front set is satisfied. Therefore we first need to study the wave front set of the Wigner distribution of a tempered distribution.
2012
18
2
410
438
http://arxiv.org/pdf/1007.0874v1.pdf
Wigner distribution; Microregularity; Wave front set; Restriction of distributions; Instantaneous frequency
P. Boggiatto; A. Oliaro; P. Wahlberg
File in questo prodotto:
File Dimensione Formato  
Boggiatto Oliaro Wahlberg - pdf editoriale.pdf

Accesso riservato

Descrizione: Articolo
Tipo di file: PDF EDITORIALE
Dimensione 827.87 kB
Formato Adobe PDF
827.87 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/89608
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact