We consider semilinear equations $p(x,D)u=F[u]$, where the linear parts $p(x,D)$ are pseudo\-differential operators of Shubin type, with symbols satisfying a global ellipticity condition in $\R^{n}.$ For classical solutions $u \in H^{s}(\R^{n}), s >n/2,$ we obtain properties of super-exponential decay and holomorphic extension, expressed in terms of Gelfand-Shilov classes.
Exponential estimates and holomorphic extensions for semilinear elliptic pseudodifferential equations
CAPPIELLO, Marco;RODINO, Luigi Giacomo
2011-01-01
Abstract
We consider semilinear equations $p(x,D)u=F[u]$, where the linear parts $p(x,D)$ are pseudo\-differential operators of Shubin type, with symbols satisfying a global ellipticity condition in $\R^{n}.$ For classical solutions $u \in H^{s}(\R^{n}), s >n/2,$ we obtain properties of super-exponential decay and holomorphic extension, expressed in terms of Gelfand-Shilov classes.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
articolopubblicato.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
173.58 kB
Formato
Adobe PDF
|
173.58 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.