In this paper, we study different generalizations of the notion of squarefreeness for ideals to the more general case of modules. We describe the cones of Hilbert functions for squarefree modules in general and those generated in degree zero. We give their extremal rays and defining inequalities. For squarefree modules generated in degree zero, we compare the defining inequalities of that cone with the classical Kruskal-Katona bound, also asymptotically.

The cones of Hilbert functions of squarefree modules

BERTONE, Cristina;
2012-01-01

Abstract

In this paper, we study different generalizations of the notion of squarefreeness for ideals to the more general case of modules. We describe the cones of Hilbert functions for squarefree modules in general and those generated in degree zero. We give their extremal rays and defining inequalities. For squarefree modules generated in degree zero, we compare the defining inequalities of that cone with the classical Kruskal-Katona bound, also asymptotically.
2012
67
161
182
http://arxiv.org/abs/1201.0896
http://arxiv.org/pdf/1201.0896v1.pdf
squarefree modules; Hilbert function; cones
Cristina Bertone; Nguyen Dang Hop; Kathrin Vorwerk
File in questo prodotto:
File Dimensione Formato  
BNVLeMatematiche.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 224.56 kB
Formato Adobe PDF
224.56 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/91546
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact