In this paper, we study different generalizations of the notion of squarefreeness for ideals to the more general case of modules. We describe the cones of Hilbert functions for squarefree modules in general and those generated in degree zero. We give their extremal rays and defining inequalities. For squarefree modules generated in degree zero, we compare the defining inequalities of that cone with the classical Kruskal-Katona bound, also asymptotically.
The cones of Hilbert functions of squarefree modules
BERTONE, Cristina;
2012-01-01
Abstract
In this paper, we study different generalizations of the notion of squarefreeness for ideals to the more general case of modules. We describe the cones of Hilbert functions for squarefree modules in general and those generated in degree zero. We give their extremal rays and defining inequalities. For squarefree modules generated in degree zero, we compare the defining inequalities of that cone with the classical Kruskal-Katona bound, also asymptotically.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BNVLeMatematiche.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
224.56 kB
Formato
Adobe PDF
|
224.56 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.