In this note we highlight the role of fractional linear birth and linear death processes recently studied in Orsingher et al. [9] and Orsingher and Polito [8], in relation to epidemic models with empirical power law distribution of the events. Taking inspiration from a formal analogy between the equation of self consistency of the epidemic type aftershock sequences (ETAS) model, and the fractional differential equation describing the mean value of fractional linear growth processes, we show some interesting applications of fractional modelling to study ab initio epidemic processes without the assumption of any empirical distribution. We also show that, in the frame of fractional modelling, subcritical regimes can be linked to linear fractional death processes and supercritical regimes to linear fractional birth processes. Moreover we discuss a simple toy model to underline the possible application of these stochastic growth models to more general epidemic phenomena such as tumoral growth.
A note on fractional linear pure birth and pure death processes in epidemic models
POLITO, Federico
2011-01-01
Abstract
In this note we highlight the role of fractional linear birth and linear death processes recently studied in Orsingher et al. [9] and Orsingher and Polito [8], in relation to epidemic models with empirical power law distribution of the events. Taking inspiration from a formal analogy between the equation of self consistency of the epidemic type aftershock sequences (ETAS) model, and the fractional differential equation describing the mean value of fractional linear growth processes, we show some interesting applications of fractional modelling to study ab initio epidemic processes without the assumption of any empirical distribution. We also show that, in the frame of fractional modelling, subcritical regimes can be linked to linear fractional death processes and supercritical regimes to linear fractional birth processes. Moreover we discuss a simple toy model to underline the possible application of these stochastic growth models to more general epidemic phenomena such as tumoral growth.File | Dimensione | Formato | |
---|---|---|---|
published-article.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
248.91 kB
Formato
Adobe PDF
|
248.91 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.