We prove sharp analytic regularity and decay at infinity of solutions of variable coefficients nonlinear harmonic oscillators. Namely, we show holomorphic extension to a sector in the complex domain, with a corresponding Gaussian decay, according to the basic properties of the Hermite functions in $\mathbb{R}^d$. Our results apply, in particular, to nonlinear eigenvalue problems for the harmonic oscillator associated to a real-analytic scattering, or asymptotically conic, metric in $\mathbb{R}^d$, as well as to certain perturbations of the classical harmonic oscillator.

Regularity and decay of solutions of nonlinear harmonic oscillators

CAPPIELLO, Marco;
2012-01-01

Abstract

We prove sharp analytic regularity and decay at infinity of solutions of variable coefficients nonlinear harmonic oscillators. Namely, we show holomorphic extension to a sector in the complex domain, with a corresponding Gaussian decay, according to the basic properties of the Hermite functions in $\mathbb{R}^d$. Our results apply, in particular, to nonlinear eigenvalue problems for the harmonic oscillator associated to a real-analytic scattering, or asymptotically conic, metric in $\mathbb{R}^d$, as well as to certain perturbations of the classical harmonic oscillator.
2012
Inglese
Esperti anonimi
229
1266
1299
34
Nonlinear harmonic oscillators; holomorphic extension; Gaussian decay; pseudodifferential operators
no
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
262
2
M. Cappiello; F. Nicola
info:eu-repo/semantics/article
partially_open
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
File Dimensione Formato  
YAIMA3943.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 474.64 kB
Formato Adobe PDF
474.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
CN2versioneaperTO.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 390.38 kB
Formato Adobe PDF
390.38 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/93237
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact