In this paper, we study the asymptotic properties of a sequence of posterior distributions based on an independent and identically distributed sample and when the Bayesian model is misspecified. We find a sufficient condition on the prior for the posterior to accumulate around the densities in the model closest in the Kullback–Leibler sense to the true density function. Examples are presented.

Bayesian asymptotics with misspecified models

DE BLASI, Pierpaolo;
2013

Abstract

In this paper, we study the asymptotic properties of a sequence of posterior distributions based on an independent and identically distributed sample and when the Bayesian model is misspecified. We find a sufficient condition on the prior for the posterior to accumulate around the densities in the model closest in the Kullback–Leibler sense to the true density function. Examples are presented.
23
169
187
http://www3.stat.sinica.edu.tw/statistica/
Asymptotics; Consistency; Misspecified model
P. De Blasi; S.G. Walker
File in questo prodotto:
File Dimensione Formato  
deblasi,walker-2013sinica.pdf

Accesso aperto con embargo fino al 01/02/2014

Tipo di file: PDF EDITORIALE
Dimensione 196.04 kB
Formato Adobe PDF
196.04 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/96936
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 16
social impact