In this paper we generate and study new cubature formulas based on spline quasi-interpolants defined as linear combinations of C^1 bivariate quadratic B-splines on a rectangular domain Ω, endowed with a non-uniform criss-cross triangulation, with discrete linear functionals as coefficients. Such B-splines have their supports contained in Ω and there is no data point outside this domain. Numerical results illustrate the methods.

Numerical integration based on bivariate quadratic spline quasi-interpolants on bounded domains

LAMBERTI, Paola
2009-01-01

Abstract

In this paper we generate and study new cubature formulas based on spline quasi-interpolants defined as linear combinations of C^1 bivariate quadratic B-splines on a rectangular domain Ω, endowed with a non-uniform criss-cross triangulation, with discrete linear functionals as coefficients. Such B-splines have their supports contained in Ω and there is no data point outside this domain. Numerical results illustrate the methods.
2009
BIT
49
565
588
Cubatures; Bivariate spline approximation; Quasi-interpolation
P. Lamberti
File in questo prodotto:
File Dimensione Formato  
mioBIT.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 570.49 kB
Formato Adobe PDF
570.49 kB Adobe PDF Visualizza/Apri
fulltext-1.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 4.02 MB
Formato Adobe PDF
4.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/102380
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact