Abstract. We define a constructive model for Delta-0-2 -maps, that is, maps recursively definable from a map deciding the halting problem. Our model refines existing constructive interpretation for classical reasoning over one-quantifier formulas: it is compositional (Modus Ponens is interpreted as an application) and semantical (rather than translating classical proofs into intuitionistic ones, we define a mathematical structure intuitionistically validating Excluded Middle for one-quantifier formulas).

Interactive Learning-Based Realizability for Heyting Arithmetic with EM1

ASCHIERI, FEDERICO;BERARDI, Stefano
2010-01-01

Abstract

Abstract. We define a constructive model for Delta-0-2 -maps, that is, maps recursively definable from a map deciding the halting problem. Our model refines existing constructive interpretation for classical reasoning over one-quantifier formulas: it is compositional (Modus Ponens is interpreted as an application) and semantical (rather than translating classical proofs into intuitionistic ones, we define a mathematical structure intuitionistically validating Excluded Middle for one-quantifier formulas).
2010
6 issue 3 paper 19
1
22
http://www.lmcs-online.org/index.php
learning in the limit; intuitionism; classical logic; realizability
Federico Aschieri; Stefano Berardi
File in questo prodotto:
File Dimensione Formato  
INTERACTIVE LEARNING-BASEDREALIZABILITYFORHEYTINGARITHMETICWITHEM1.pdf

Accesso riservato

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 299.94 kB
Formato Adobe PDF
299.94 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/103862
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 14
social impact