We show, by variational methods, that there exists a set $A$ open and dense in $\{a\in L^\infty(\mathbb{R}^N)~:~ \liminf_{|x|\to\infty}a(x)\geq 0\}$ such that if $a\in A$ then the problem $ -\Delta u+u=a(x)|u|^{p-1}u$, $u\in H^1(\mathbb{R}^N)$, with $p$ subcritical (or more general nonlinearities), admits infinitely many solutions.

Genericity of the existence of infinitely many solutions for a class of semilinear elliptic equations in RN

CALDIROLI, Paolo;
1998-01-01

Abstract

We show, by variational methods, that there exists a set $A$ open and dense in $\{a\in L^\infty(\mathbb{R}^N)~:~ \liminf_{|x|\to\infty}a(x)\geq 0\}$ such that if $a\in A$ then the problem $ -\Delta u+u=a(x)|u|^{p-1}u$, $u\in H^1(\mathbb{R}^N)$, with $p$ subcritical (or more general nonlinearities), admits infinitely many solutions.
1998
27
47
68
http://www.numdam.org/item?id=ASNSP_1998_4_27_1_47_0
Semilinear elliptic equations; locally compact case; minimax arguments; multiplicity of solutions; genericity
Alessio F.; Caldiroli P.; Montecchiari P.
File in questo prodotto:
File Dimensione Formato  
AnnSNS1998.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 252.37 kB
Formato Adobe PDF
252.37 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/105515
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact