We study uniqueness property for the Cauchy problem $x'\in\partial V(x)$, $x(0)=\xi$, where $V\colon\mathbb{R}^n\to\mathbb{R}$ is a locally Lipschitz continuous, quasiconvex function (i.e. the sublevel sets $\{V\le c\}$ are convex) and $\partial V(x)$ is the generalized gradient of $V$ at $x$. We prove that if $0\not\in\partial V(x)$ for $V(x)\ge b$, then the set of initial data $\xi\in\{V=b\}$ yielding non uniqueness of solution in a geometric sense has $(n-1)$-dimensional Hausdorff measure zero in $ {V=b\}$.

Measure properties of the set of initial data yielding non uniqueness for a class of differential inclusions

CALDIROLI, Paolo;
1996-01-01

Abstract

We study uniqueness property for the Cauchy problem $x'\in\partial V(x)$, $x(0)=\xi$, where $V\colon\mathbb{R}^n\to\mathbb{R}$ is a locally Lipschitz continuous, quasiconvex function (i.e. the sublevel sets $\{V\le c\}$ are convex) and $\partial V(x)$ is the generalized gradient of $V$ at $x$. We prove that if $0\not\in\partial V(x)$ for $V(x)\ge b$, then the set of initial data $\xi\in\{V=b\}$ yielding non uniqueness of solution in a geometric sense has $(n-1)$-dimensional Hausdorff measure zero in $ {V=b\}$.
1996
3
499
507
http://www.springerlink.com/content/q32r463047561316/
differential inclusion
Caldiroli P.; Treu G.
File in questo prodotto:
File Dimensione Formato  
NoDEA1996.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 148.87 kB
Formato Adobe PDF
148.87 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/110516
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact