We embed Safe Recursion on Notation (SRN) into Light Affine Logic by Levels (LALL), derived from the logic L4. LALL is an intuitionistic deductive system, with a polynomial time cut elimination strategy. The embedding allows to represent every term t of SRN as a family of proof nets |t|^l in LALL. Every proof net |t|^l in the family simulates t on arguments whose bit length is bounded by the integer l. The embedding is based on two crucial features. One is the recursive type in LALL that encodes Scott binary numerals, i.e. Scott words, as proof nets. Scott words represent the arguments of t in place of the more standard Church binary numerals. Also, the embedding exploits the "fuzzy" borders of paragraph boxes that LALL inherits from L4 to "freely" duplicate the arguments, especially the safe ones, of t. Finally, the type of |t|^l depends on the number of composition and recursion schemes used to define t, namely the structural complexity of t. Moreover, the size of |t|^l is a polynomial in l, whose degree depends on the structural complexity of t. So, this work makes closer both the predicative recursive theoretic principles SRN relies on, and the proof theoretic one, called /stratification/, at the base of Light Linear Logic.

Safe Recursion on Notation into a Light Logic by Levels

ROVERSI, Luca;VERCELLI, Luca
2010-01-01

Abstract

We embed Safe Recursion on Notation (SRN) into Light Affine Logic by Levels (LALL), derived from the logic L4. LALL is an intuitionistic deductive system, with a polynomial time cut elimination strategy. The embedding allows to represent every term t of SRN as a family of proof nets |t|^l in LALL. Every proof net |t|^l in the family simulates t on arguments whose bit length is bounded by the integer l. The embedding is based on two crucial features. One is the recursive type in LALL that encodes Scott binary numerals, i.e. Scott words, as proof nets. Scott words represent the arguments of t in place of the more standard Church binary numerals. Also, the embedding exploits the "fuzzy" borders of paragraph boxes that LALL inherits from L4 to "freely" duplicate the arguments, especially the safe ones, of t. Finally, the type of |t|^l depends on the number of composition and recursion schemes used to define t, namely the structural complexity of t. Moreover, the size of |t|^l is a polynomial in l, whose degree depends on the structural complexity of t. So, this work makes closer both the predicative recursive theoretic principles SRN relies on, and the proof theoretic one, called /stratification/, at the base of Light Linear Logic.
2010
International Workshop on Developments in Implicit Computational complExity
Paphos, Cyprus
27-28th March 2010
23
63
77
http://www.di.unito.it/~rover
Implicit computational complexity; safe recursion; linear logic
Luca Roversi ; Luca Vercelli
File in questo prodotto:
File Dimensione Formato  
RoversiVercelliDICE2010.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 193.05 kB
Formato Adobe PDF
193.05 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/131262
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact