In this paper, after introducing a natural generalization of the classical Wigner transform, namely the $\tau-$Wigner transforms, depending on the parameter $\tau\in[0,1]$, we study the problem of its positivity. In particular we prove two theorems of Hudson type considering the action of the $\tau-$Wigner transforms on functions and on distributions respectively. We give then an application of our results concerning Weyl and localization pseudo-differential operators.

Hudson's Theorem for $\tau-$Wigner Transforms

BOGGIATTO, Paolo;DE DONNO, Giuseppe;OLIARO, Alessandro
2013-01-01

Abstract

In this paper, after introducing a natural generalization of the classical Wigner transform, namely the $\tau-$Wigner transforms, depending on the parameter $\tau\in[0,1]$, we study the problem of its positivity. In particular we prove two theorems of Hudson type considering the action of the $\tau-$Wigner transforms on functions and on distributions respectively. We give then an application of our results concerning Weyl and localization pseudo-differential operators.
2013
45
6
1131
1147
Wigner type transform; Positity
Boggiatto, Paolo; De Donno, Giuseppe; Oliaro, Alessandro
File in questo prodotto:
File Dimensione Formato  
BDOHudson.pdf

Accesso aperto

Descrizione: articolo principale
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 489.77 kB
Formato Adobe PDF
489.77 kB Adobe PDF Visualizza/Apri
Hudson.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 258.24 kB
Formato Adobe PDF
258.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/132773
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact