In this paper, after introducing a natural generalization of the classical Wigner transform, namely the $\tau-$Wigner transforms, depending on the parameter $\tau\in[0,1]$, we study the problem of its positivity. In particular we prove two theorems of Hudson type considering the action of the $\tau-$Wigner transforms on functions and on distributions respectively. We give then an application of our results concerning Weyl and localization pseudo-differential operators.
Hudson's Theorem for $\tau-$Wigner Transforms
BOGGIATTO, Paolo;DE DONNO, Giuseppe;OLIARO, Alessandro
2013-01-01
Abstract
In this paper, after introducing a natural generalization of the classical Wigner transform, namely the $\tau-$Wigner transforms, depending on the parameter $\tau\in[0,1]$, we study the problem of its positivity. In particular we prove two theorems of Hudson type considering the action of the $\tau-$Wigner transforms on functions and on distributions respectively. We give then an application of our results concerning Weyl and localization pseudo-differential operators.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BDOHudson.pdf
Accesso aperto
Descrizione: articolo principale
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
489.77 kB
Formato
Adobe PDF
|
489.77 kB | Adobe PDF | Visualizza/Apri |
Hudson.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
258.24 kB
Formato
Adobe PDF
|
258.24 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.