We describe all the quasi-bialgebra structures of a group algebra over a torsion-free abelian group. They all come out to be triangular in a unique way. Moreover, up to an isomorphism, these quasi-bialgebra structures produce only one (braided) monoidal structure on the category of their representations. Applying these results to the algebra of Laurent poly- nomials, we recover two braided monoidal categories introduced in [CG] by S. Caenepeel and I. Goyvaerts in connection with Hom-structures (Lie algebras, algebras, coalgebras, Hopf algebras).

Quasi-bialgebra Structures and Torsion-free Abelian Groups

ARDIZZONI, Alessandro;
2013-01-01

Abstract

We describe all the quasi-bialgebra structures of a group algebra over a torsion-free abelian group. They all come out to be triangular in a unique way. Moreover, up to an isomorphism, these quasi-bialgebra structures produce only one (braided) monoidal structure on the category of their representations. Applying these results to the algebra of Laurent poly- nomials, we recover two braided monoidal categories introduced in [CG] by S. Caenepeel and I. Goyvaerts in connection with Hom-structures (Lie algebras, algebras, coalgebras, Hopf algebras).
2013
56
3
247
265
http://arxiv.org/pdf/1302.2453.pdf
http://ssmr.ro/bulletin/volumes/56-3/node2.html
Quasi-bialgebras; Hom-category; Laurent polynomials; torsion-free abelian groups
A. ARDIZZONI; D. BULACU; C. MENINI
File in questo prodotto:
File Dimensione Formato  
31-QuasiBialgStructTorsionFree.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 512 kB
Formato Adobe PDF
512 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/133183
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact