In this work, the direct photolysis of salicylic acid, generally used as keratolytic agent in many dermatological products and as preservative in cosmetics, was investigated. The photodegradation of the acid under UVB irradiation was evaluated in different vehicles, such as water solutions at different pH, propylene glycol/water, and ethanol/water mixtures, sodium dodecyl sulphate solutions, and O/W emulsions prepared with Montanov 68 and Amphysol K as emulsifiers. The increase of pH enhanced the photodegradation of salicylic acid while the different vehicles protected the acid from the action of UVB radiations. However, the best protection was observed dissolving the acid in the lipid core of O/W emulsions, which probably removes the active from the polar environment that can promote the photolysis. The photocatalytic activity of TiO2 on the degradation of salicylic acid also was evaluated. TiO2 frequently is used as sunscreen in many cosmetic preparations. Salicylic acid and the pigment can be contained in the same solar formulation; hence, it can be interesting to study their interaction under UVB. TiO2 enhanced the photodegradation of salicylic acid in all the media previously reported and its photocatalytic activity was influenced by the pH and by the components of the vehicles.
Study on the photodegradation of salicylic acid in different vehicles in the absence and in the presence of TiO2
CARLOTTI, Maria Eugenia;SAPINO, Simona;VIONE, Davide Vittorio;MINERO, Claudio;PEIRA, Elena;TROTTA, Michele
2007-01-01
Abstract
In this work, the direct photolysis of salicylic acid, generally used as keratolytic agent in many dermatological products and as preservative in cosmetics, was investigated. The photodegradation of the acid under UVB irradiation was evaluated in different vehicles, such as water solutions at different pH, propylene glycol/water, and ethanol/water mixtures, sodium dodecyl sulphate solutions, and O/W emulsions prepared with Montanov 68 and Amphysol K as emulsifiers. The increase of pH enhanced the photodegradation of salicylic acid while the different vehicles protected the acid from the action of UVB radiations. However, the best protection was observed dissolving the acid in the lipid core of O/W emulsions, which probably removes the active from the polar environment that can promote the photolysis. The photocatalytic activity of TiO2 on the degradation of salicylic acid also was evaluated. TiO2 frequently is used as sunscreen in many cosmetic preparations. Salicylic acid and the pigment can be contained in the same solar formulation; hence, it can be interesting to study their interaction under UVB. TiO2 enhanced the photodegradation of salicylic acid in all the media previously reported and its photocatalytic activity was influenced by the pH and by the components of the vehicles.File | Dimensione | Formato | |
---|---|---|---|
salicilyc TiO201932690701346008.pdf
Accesso riservato
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
495.79 kB
Formato
Adobe PDF
|
495.79 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.