We investigate a portfolio optimization problem for an agent who invests in two assets, a risk-free and a risky asset modeled by a geometric Brownian motion. The investor faces both fixed and proportional transaction costs and liquidity constraints. His objective is to maximize the expected utility from the portfolio liquidation at a terminal finite horizon. The model is formulated as a parabolic impulse control problem and we characterize the value function as the unique constrained viscosity solution of the associated quasi-variational inequality. We compute numerically the optimal policy by a an iterative finite element discretization technique, presenting extended numerical results in the case of a constant relative risk aversion utility function. Our results show that, even with small transaction costs and distant horizons, the optimal strategy is essentially a buy-and-hold trading strategy where the agent recalibrates his portfolio very few times. This contrasts sharply with the continuous interventions of the Merton's model without transaction costs.
Portfolio Optimization over a Finite Horizon with Fixed and Proportional Transaction Costs and Liquidity Constraints
BACCARIN, Stefano;
2013-01-01
Abstract
We investigate a portfolio optimization problem for an agent who invests in two assets, a risk-free and a risky asset modeled by a geometric Brownian motion. The investor faces both fixed and proportional transaction costs and liquidity constraints. His objective is to maximize the expected utility from the portfolio liquidation at a terminal finite horizon. The model is formulated as a parabolic impulse control problem and we characterize the value function as the unique constrained viscosity solution of the associated quasi-variational inequality. We compute numerically the optimal policy by a an iterative finite element discretization technique, presenting extended numerical results in the case of a constant relative risk aversion utility function. Our results show that, even with small transaction costs and distant horizons, the optimal strategy is essentially a buy-and-hold trading strategy where the agent recalibrates his portfolio very few times. This contrasts sharply with the continuous interventions of the Merton's model without transaction costs.File | Dimensione | Formato | |
---|---|---|---|
WP17-2013.pdf
Accesso aperto
Tipo di file:
PREPRINT (PRIMA BOZZA)
Dimensione
684.91 kB
Formato
Adobe PDF
|
684.91 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.