This paper provides qualitative properties of the iterated function system (IFS) generated by the optimal policy function for a class of stochastic one-sector optimal growth models. We obtain, explicitly in terms of the primitives of the model (i) a compact interval (nor including the zero stock) in which the Support of the invariant distribution Of Output Must lie, and (ii) a Lipschitz property of the iterated function system oil this interval. As applications, we are able to present parameter configurations under which (a) the Support Of the invariant distribution of the IFS is a generalized Cantor set,and (b) the invariant distribution is singular

On Lipschitz Continuity of the Iterated Function System in a Stochastic Optimal Growth Model

PRIVILEGGI, Fabio
2009-01-01

Abstract

This paper provides qualitative properties of the iterated function system (IFS) generated by the optimal policy function for a class of stochastic one-sector optimal growth models. We obtain, explicitly in terms of the primitives of the model (i) a compact interval (nor including the zero stock) in which the Support of the invariant distribution Of Output Must lie, and (ii) a Lipschitz property of the iterated function system oil this interval. As applications, we are able to present parameter configurations under which (a) the Support Of the invariant distribution of the IFS is a generalized Cantor set,and (b) the invariant distribution is singular
2009
45
1-2
185
198
http://dx.doi.org/10.1016/j.jmateco.2008.08.003
Stochastic optimal growth; Iterated function system; Invariant measure; Lipschitz property; Contraction property; No overlap property; Generalized topological Cantor set; Singular invariant distribution
T. Mitra; F. Privileggi
File in questo prodotto:
File Dimensione Formato  
MitraPrivileggi09.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 313.4 kB
Formato Adobe PDF
313.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
OAMitraPrivileggi09.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 310.31 kB
Formato Adobe PDF
310.31 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/136160
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact