We study the problem of propagation of analytic regularity for semi-linear symmetric hyperbolic systems. We adopt a global perspective and we prove that if the initial datum extends to a holomorphic function in a strip of radius (=width) $\epsilon_0$, the same happens for the solution $u(t,\cdot)$ for a certain radius $\epsilon(t)$, as long as the solution exists. Our focus is on precise lower bounds on the spatial radius of analyticity $\epsilon(t)$ as $t$ grows. \par We also get similar results for the Schr\"odinger equation with a real-analytic electromagnetic potential.
On the radius of spatial analyticity for semilinear symmetric hyperbolic systems
CAPPIELLO, Marco;
2014-01-01
Abstract
We study the problem of propagation of analytic regularity for semi-linear symmetric hyperbolic systems. We adopt a global perspective and we prove that if the initial datum extends to a holomorphic function in a strip of radius (=width) $\epsilon_0$, the same happens for the solution $u(t,\cdot)$ for a certain radius $\epsilon(t)$, as long as the solution exists. Our focus is on precise lower bounds on the spatial radius of analyticity $\epsilon(t)$ as $t$ grows. \par We also get similar results for the Schr\"odinger equation with a real-analytic electromagnetic potential.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
YJDEQ7394.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
398.39 kB
Formato
Adobe PDF
|
398.39 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
CapDanNic.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
219.85 kB
Formato
Adobe PDF
|
219.85 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.