We predict a curve at an unmonitored site taking into account exogenous variables using a functional kriging model with external drift and, alternatively, an additive model with a spatio-temporal smooth term. To evaluate uncertainty of the predicted curves, a semi-parametric bootstrap approach is used for the first, while standard inference is used for the second. The performance of both approaches is illustrated on pollutant functional data.
Kriging for functional data: uncertainty assessment
IGNACCOLO, Rosaria;FRANCO VILLORIA, Maria
2014-01-01
Abstract
We predict a curve at an unmonitored site taking into account exogenous variables using a functional kriging model with external drift and, alternatively, an additive model with a spatio-temporal smooth term. To evaluate uncertainty of the predicted curves, a semi-parametric bootstrap approach is used for the first, while standard inference is used for the second. The performance of both approaches is illustrated on pollutant functional data.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2014_SIS_fked_2953_4aperto_1343014.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
2.25 MB
Formato
Adobe PDF
|
2.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.