We predict a curve at an unmonitored site taking into account exogenous variables using a functional kriging model with external drift and, alternatively, an additive model with a spatio-temporal smooth term. To evaluate uncertainty of the predicted curves, a semi-parametric bootstrap approach is used for the first, while standard inference is used for the second. The performance of both approaches is illustrated on pollutant functional data.

Kriging for functional data: uncertainty assessment

IGNACCOLO, Rosaria;FRANCO VILLORIA, Maria
2014-01-01

Abstract

We predict a curve at an unmonitored site taking into account exogenous variables using a functional kriging model with external drift and, alternatively, an additive model with a spatio-temporal smooth term. To evaluate uncertainty of the predicted curves, a semi-parametric bootstrap approach is used for the first, while standard inference is used for the second. The performance of both approaches is illustrated on pollutant functional data.
2014
47th SIS Scientific Meeting of the Italian Statistica Society
Cagliari
June 2014
47th Scientific Meeting of the Italian Statistical Society P R O C E E D I N G S
CUEC Cooperativa Universitaria Editrice Cagliaritana
1
6
9788884678744
http://www.sis2014.it/proceedings/allpapers/2953.pdf
Rosaria Ignaccolo; Maria Franco Villoria
File in questo prodotto:
File Dimensione Formato  
2014_SIS_fked_2953_4aperto_1343014.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 2.25 MB
Formato Adobe PDF
2.25 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/145817
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact