The structure of the Wadge degrees on zero-dimensional spaces is very simple (almost well-ordered), but for many other natural non-zero-dimensional spaces (including the space of reals) this structure is much more complicated. We consider weaker notions of reducibility, including the so-called \Delta^0_\alpha-reductions, and try to find for various natural topological spaces X the least ordinal \alpha_X such that for every \alpha_X \leq \beta < \omega_1 the degree-structure induced on X by the \Delta^0_\beta-reductions is simple (i.e. similar to the Wadge hierarchy on the Baire space). We show that \alpha_X \leq {\omega} for every quasi-Polish space X, that \alpha_X \leq 3 for quasi-Polish spaces of dimension different from \infty, and that this last bound is in fact optimal for many (quasi-)Polish spaces, including the real line and its powers.
Wadge-like reducibilities on arbitrary quasi-Polish spaces
MOTTO ROS, Luca;
2015-01-01
Abstract
The structure of the Wadge degrees on zero-dimensional spaces is very simple (almost well-ordered), but for many other natural non-zero-dimensional spaces (including the space of reals) this structure is much more complicated. We consider weaker notions of reducibility, including the so-called \Delta^0_\alpha-reductions, and try to find for various natural topological spaces X the least ordinal \alpha_X such that for every \alpha_X \leq \beta < \omega_1 the degree-structure induced on X by the \Delta^0_\beta-reductions is simple (i.e. similar to the Wadge hierarchy on the Baire space). We show that \alpha_X \leq {\omega} for every quasi-Polish space X, that \alpha_X \leq 3 for quasi-Polish spaces of dimension different from \infty, and that this last bound is in fact optimal for many (quasi-)Polish spaces, including the real line and its powers.File | Dimensione | Formato | |
---|---|---|---|
1204.5338.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
603.91 kB
Formato
Adobe PDF
|
603.91 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.