We study the Neumann boundary value problem for the second order ODE \begin{equation}\label{eqabs} u'' + (a^+(t)-\mu a^-(t))g(u) = 0, \qquad t \in [0,T], \end{equation} where $g \in \mathcal{C}^1(\mathbb{R})$ is a bounded function of constant sign, $a^+,a^-: [0,T] \to \mathbb{R}^+$ are the positive/negative part of a sign-changing weight $a(t)$ and $\mu > 0$ is a real parameter. Depending on the sign of $g'(u)$ at infinity, we find existence/multiplicity of solutions for $\mu$ in a ``small'' interval near the value $$ \mu_c = \frac{\int_0^T a^+(t) \, dt}{\int_0^T a^-(t) \, dt}\,. $$ The proof exploits a change of variables, transforming the sign-indefinite equation \eqref{eqabs} into a forced perturbation of an autonomous planar system, and a shooting argument. Nonexistence results for $\mu \to 0^+$ and $\mu \to +\infty$ are given, as well.

Multiple solutions to Neumann problems with indefinite weight and bounded nonlinearities

BOSCAGGIN, Alberto;
2016-01-01

Abstract

We study the Neumann boundary value problem for the second order ODE \begin{equation}\label{eqabs} u'' + (a^+(t)-\mu a^-(t))g(u) = 0, \qquad t \in [0,T], \end{equation} where $g \in \mathcal{C}^1(\mathbb{R})$ is a bounded function of constant sign, $a^+,a^-: [0,T] \to \mathbb{R}^+$ are the positive/negative part of a sign-changing weight $a(t)$ and $\mu > 0$ is a real parameter. Depending on the sign of $g'(u)$ at infinity, we find existence/multiplicity of solutions for $\mu$ in a ``small'' interval near the value $$ \mu_c = \frac{\int_0^T a^+(t) \, dt}{\int_0^T a^-(t) \, dt}\,. $$ The proof exploits a change of variables, transforming the sign-indefinite equation \eqref{eqabs} into a forced perturbation of an autonomous planar system, and a shooting argument. Nonexistence results for $\mu \to 0^+$ and $\mu \to +\infty$ are given, as well.
2016
167
187
A. Boscaggin; M. Garrione
File in questo prodotto:
File Dimensione Formato  
BosGarJDDE.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 884.67 kB
Formato Adobe PDF
884.67 kB Adobe PDF Visualizza/Apri
Boscaggin-Garrione2016_Article_MultipleSolutionsToNeumannProb.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1509335
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact