We study the asymptotic behavior of the counting function of tensor products of operators, in the cases where the factors are either pseudodifferential operators on closed manifolds, or pseudodifferential operators of Shubin type on R^n, respectively. We obtain, in particular, the sharpness of the remainder term in the corresponding Weyl formulae, which we prove by means of the analysis of some explicit examples.

Sharp Weyl Estimates for Tensor Products of Pseudodifferential Operators

BATTISTI, UBERTINO;BORSERO, MASSIMO;CORIASCO, Sandro
2016-01-01

Abstract

We study the asymptotic behavior of the counting function of tensor products of operators, in the cases where the factors are either pseudodifferential operators on closed manifolds, or pseudodifferential operators of Shubin type on R^n, respectively. We obtain, in particular, the sharpness of the remainder term in the corresponding Weyl formulae, which we prove by means of the analysis of some explicit examples.
2016
195
3
795
820
http://arxiv.org/abs/1411.2133
http://link.springer.com/article/10.1007/s10231-015-0490-2
spectral theory, tensor product, bisingular operator, Weyl's law
U. Battisti; M. Borsero; S. Coriasco
File in questo prodotto:
File Dimensione Formato  
BBC16.pdf

Open Access dal 26/03/2016

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 784.33 kB
Formato Adobe PDF
784.33 kB Adobe PDF Visualizza/Apri
BBC_SWATP.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 620.04 kB
Formato Adobe PDF
620.04 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/151604
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact