We study the asymptotic behavior of the counting function of tensor products of operators, in the cases where the factors are either pseudodifferential operators on closed manifolds, or pseudodifferential operators of Shubin type on R^n, respectively. We obtain, in particular, the sharpness of the remainder term in the corresponding Weyl formulae, which we prove by means of the analysis of some explicit examples.
Sharp Weyl Estimates for Tensor Products of Pseudodifferential Operators
BATTISTI, UBERTINO;BORSERO, MASSIMO;CORIASCO, Sandro
2016-01-01
Abstract
We study the asymptotic behavior of the counting function of tensor products of operators, in the cases where the factors are either pseudodifferential operators on closed manifolds, or pseudodifferential operators of Shubin type on R^n, respectively. We obtain, in particular, the sharpness of the remainder term in the corresponding Weyl formulae, which we prove by means of the analysis of some explicit examples.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BBC16.pdf
Open Access dal 26/03/2016
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
784.33 kB
Formato
Adobe PDF
|
784.33 kB | Adobe PDF | Visualizza/Apri |
BBC_SWATP.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
620.04 kB
Formato
Adobe PDF
|
620.04 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.