We give a functional analytical proof of the equality between the Maslov index of a semi-Riemannian geodesic and the spectral flow of the path of self-adjoint Fredholm operators obtained from the index form. This fact, together with recent results on the bifurcation for critical points of strongly indefinite functionals (see P. M. Fitzpatrick, J. Pejsachowicz, L. Recht, Spectral Flow and Bifurcation of Strongly Indefinite Functionals Part I. General Theory, J. Funct. Anal. 162 (1) (1999), 52-95.) imply that each non degenerate and non null conjugate (or P-focal) point along a semi-Riemannian geodesic is a bifurcation point.

Spectral flow, Maslov index and bifurcation of semi-Riemannian geodesics

PORTALURI, Alessandro;
2004-01-01

Abstract

We give a functional analytical proof of the equality between the Maslov index of a semi-Riemannian geodesic and the spectral flow of the path of self-adjoint Fredholm operators obtained from the index form. This fact, together with recent results on the bifurcation for critical points of strongly indefinite functionals (see P. M. Fitzpatrick, J. Pejsachowicz, L. Recht, Spectral Flow and Bifurcation of Strongly Indefinite Functionals Part I. General Theory, J. Funct. Anal. 162 (1) (1999), 52-95.) imply that each non degenerate and non null conjugate (or P-focal) point along a semi-Riemannian geodesic is a bifurcation point.
2004
25
2
121
149
http://arxiv.org/abs/math/0211091
Geodesics, conjugate points, Spectral flow, Morse index theeorem
Piccione, Paolo; Portaluri, Alessandro; Tausk, Daniel V.
File in questo prodotto:
File Dimensione Formato  
preprintGeoBif.pdf

Accesso aperto

Dimensione 432.73 kB
Formato Adobe PDF
432.73 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1520721
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 31
social impact