The stochastic modelling of biological systems, coupled with Monte Carlo simulation of models, is an increasingly popular technique in Bioinformatics. The simulation-analysis workflow may result into a computationally expensive task reducing the interactivity required in the model tuning. In this work, we advocate high-level software design as a vehicle for building efficient and portable parallel simulators for a variety of platforms, ranging from multi-core platforms to GPGPUs to cloud. In particular, the Calculus of Wrapped Compartments (CWC) parallel simulator for systems biology equipped with on- line mining of results, which is designed according to the FastFlow pattern-based approach, is discussed as a running example. In this work, the CWC simulator is used as a paradigmatic example of a complex C++ application where the quality of results is correlated with both computation and I/O bounds, and where high-quality results might turn into big data. The FastFlow parallel programming framework, which advocates C++ pattern- based parallel programming makes it possible to develop portable parallel code without relinquish neither run-time efficiency nor performance tuning opportunities. Performance and effectiveness of the approach are validated on a variety of platforms, inter-alia cache-coherent multi-cores, cluster of multi-core (Ethernet and Infiniband) and the Amazon Elastic Compute Cloud.
Exercising High-Level Parallel Programming on Streams: A Systems Biology Use Case
ALDINUCCI, MARCO;DROCCO, MAURIZIO;PERETTI PEZZI, GUILHERME;MISALE, CLAUDIA;TORDINI, FABIO;
2014-01-01
Abstract
The stochastic modelling of biological systems, coupled with Monte Carlo simulation of models, is an increasingly popular technique in Bioinformatics. The simulation-analysis workflow may result into a computationally expensive task reducing the interactivity required in the model tuning. In this work, we advocate high-level software design as a vehicle for building efficient and portable parallel simulators for a variety of platforms, ranging from multi-core platforms to GPGPUs to cloud. In particular, the Calculus of Wrapped Compartments (CWC) parallel simulator for systems biology equipped with on- line mining of results, which is designed according to the FastFlow pattern-based approach, is discussed as a running example. In this work, the CWC simulator is used as a paradigmatic example of a complex C++ application where the quality of results is correlated with both computation and I/O bounds, and where high-quality results might turn into big data. The FastFlow parallel programming framework, which advocates C++ pattern- based parallel programming makes it possible to develop portable parallel code without relinquish neither run-time efficiency nor performance tuning opportunities. Performance and effectiveness of the approach are validated on a variety of platforms, inter-alia cache-coherent multi-cores, cluster of multi-core (Ethernet and Infiniband) and the Amazon Elastic Compute Cloud.File | Dimensione | Formato | |
---|---|---|---|
2014_dcperf_cwc_gpu.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
310.62 kB
Formato
Adobe PDF
|
310.62 kB | Adobe PDF | Visualizza/Apri |
2014_DCS_exercising.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
646.61 kB
Formato
Adobe PDF
|
646.61 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.