We construct three new families of fibrations π : S → B where S is an algebraic complex surface and B a curve that violate Xiao’s conjecture relating the relative irregularity and the genus of the general fiber. The fibers of π are certain étale cyclic covers of hyperelliptic curves that give coverings of P 1 with dihedral monodromy. As an application, we also show the existence of big and nef effective divisors in the Brill–Noether range.
Dihedral monodromy and Xiao fibrations
ALBANO, Alberto;
2016-01-01
Abstract
We construct three new families of fibrations π : S → B where S is an algebraic complex surface and B a curve that violate Xiao’s conjecture relating the relative irregularity and the genus of the general fiber. The fibers of π are certain étale cyclic covers of hyperelliptic curves that give coverings of P 1 with dihedral monodromy. As an application, we also show the existence of big and nef effective divisors in the Brill–Noether range.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1406.6308v3.pdf
Accesso aperto
Descrizione: Articolo completo
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
187.58 kB
Formato
Adobe PDF
|
187.58 kB | Adobe PDF | Visualizza/Apri |
Albano-Pirola2016_Article_DihedralMonodromyAndXiaoFibrat.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
318.15 kB
Formato
Adobe PDF
|
318.15 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.