We present several results relating the general theory of the stationary tower forcing developed by Woodin with forcing axioms. The main results is that the forcing axiom MM^{++} (also known as MM^{+\omega_1}) decides the \Pi_2-theory of H_{\omega_2} with respect to stationary set preserving forcings. We argue that this is a close to optimal generalization to H_{\omega_2} of Woodin's absoluteness results for L(R).

Martin's maximum revisited

VIALE, Matteo
2016-01-01

Abstract

We present several results relating the general theory of the stationary tower forcing developed by Woodin with forcing axioms. The main results is that the forcing axiom MM^{++} (also known as MM^{+\omega_1}) decides the \Pi_2-theory of H_{\omega_2} with respect to stationary set preserving forcings. We argue that this is a close to optimal generalization to H_{\omega_2} of Woodin's absoluteness results for L(R).
2016
55
1-2
295
317
http://arxiv.org/abs/1110.1181
set theory, logic, forcing axioms, generic absoluteness
Viale, Matteo
File in questo prodotto:
File Dimensione Formato  
Martinmaximumrevisited-nolines-Archive-submission.pdf

Open Access dal 18/05/2018

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 173.33 kB
Formato Adobe PDF
173.33 kB Adobe PDF Visualizza/Apri
Viale2016_Article_MartinSMaximumRevisited.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 529.94 kB
Formato Adobe PDF
529.94 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1558271
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 8
social impact