Parallelising sequential applications is usually a very hard job, due to many different ways in which an application can be parallelised and a large number of programming models (each with its own advantages and disadvantages) that can be used. In this paper, we describe a method to semi- automatically generate and evaluate different parallelisations of the same application, allowing programmers to find the best parallelisation without significant manual reengineering of the code. We describe a novel, high-level domain-specific language, Refactoring Pattern Language (RPL), that is used to represent the parallel structure of an application and to capture its extra-functional properties (such as service time). We then describe a set of RPL rewrite rules that can be used to generate alternative, but semantically equivalent, parallel structures (parallelisations) of the same application. We also describe the RPL Shell that can be used to evaluate these parallelisations, in terms of the desired extra-functional properties. Finally, we describe a set of C++ refactorings, targeting OpenMP, Intel TBB and FastFlow parallel programming models, that semi-automatically apply the desired parallelisation to the application's source code, therefore giving a parallel version of the code. We demonstrate how the RPL and the refactoring rules can be used to derive efficient parallelisations of two realistic C++ use cases (Image Convolution and Ant Colony Optimisation).
RPL: A Domain-Specific Language for Designing and Implementing Parallel C++ Applications
ALDINUCCI, MARCO;
2016-01-01
Abstract
Parallelising sequential applications is usually a very hard job, due to many different ways in which an application can be parallelised and a large number of programming models (each with its own advantages and disadvantages) that can be used. In this paper, we describe a method to semi- automatically generate and evaluate different parallelisations of the same application, allowing programmers to find the best parallelisation without significant manual reengineering of the code. We describe a novel, high-level domain-specific language, Refactoring Pattern Language (RPL), that is used to represent the parallel structure of an application and to capture its extra-functional properties (such as service time). We then describe a set of RPL rewrite rules that can be used to generate alternative, but semantically equivalent, parallel structures (parallelisations) of the same application. We also describe the RPL Shell that can be used to evaluate these parallelisations, in terms of the desired extra-functional properties. Finally, we describe a set of C++ refactorings, targeting OpenMP, Intel TBB and FastFlow parallel programming models, that semi-automatically apply the desired parallelisation to the application's source code, therefore giving a parallel version of the code. We demonstrate how the RPL and the refactoring rules can be used to derive efficient parallelisations of two realistic C++ use cases (Image Convolution and Ant Colony Optimisation).File | Dimensione | Formato | |
---|---|---|---|
2016_pdp_rpl.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
476.05 kB
Formato
Adobe PDF
|
476.05 kB | Adobe PDF | Visualizza/Apri |
07445342.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
215.76 kB
Formato
Adobe PDF
|
215.76 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.