We introduce a global wave front set suitable for the analysis of tempered ultradistributions of quasianalytic Gelfand-Shilov type. We study the transformation properties of the wave front set and use them to give microlocal existence results for pull-backs and products. We further study quasianalytic microlocality for classes of localization and ultradifferential operators, and prove microellipticity for differential operators with polynomial coefficients.
Microlocal analysis of quasianalytic Gelfand-Shilov type ultradistributions
CAPPIELLO, Marco;
2016-01-01
Abstract
We introduce a global wave front set suitable for the analysis of tempered ultradistributions of quasianalytic Gelfand-Shilov type. We study the transformation properties of the wave front set and use them to give microlocal existence results for pull-backs and products. We further study quasianalytic microlocality for classes of localization and ultradifferential operators, and prove microellipticity for differential operators with polynomial coefficients.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
articolopubblicato.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
474.96 kB
Formato
Adobe PDF
|
474.96 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
gswf180215.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
292.94 kB
Formato
Adobe PDF
|
292.94 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.