Measurement error is an important source of bias in epidemiological studies. We illustrate three approaches to sensitivity analysis for the effect of measurement error: imputation of the 'true' exposure based on specifying the sensitivity and specificity of the measured exposure (SS); direct imputation (DI) using a regression model for the predictive values; and adjustment based on a fully Bayesian analysis.

A comparison of sensitivity-specificity imputation, direct imputation and fully Bayesian analysis to adjust for exposure misclassification when validation data are unavailable

MAULE, MILENA MARIA;
2017-01-01

Abstract

Measurement error is an important source of bias in epidemiological studies. We illustrate three approaches to sensitivity analysis for the effect of measurement error: imputation of the 'true' exposure based on specifying the sensitivity and specificity of the measured exposure (SS); direct imputation (DI) using a regression model for the predictive values; and adjustment based on a fully Bayesian analysis.
2017
1
10
Misclassification; direct imputation; fully Bayesian analysis; lung cancer; sensitivity/specificity imputation; smoking status
Corbin, Marine; Haslett, Stephen; Pearce, Neil; Maule, Milena; Greenland, Sander
File in questo prodotto:
File Dimensione Formato  
International Journal of Epidemiology 2017.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 440.84 kB
Formato Adobe PDF
440.84 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
A comparison of sensitivity.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 376.57 kB
Formato Adobe PDF
376.57 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1633822
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 14
social impact