Measurement error is an important source of bias in epidemiological studies. We illustrate three approaches to sensitivity analysis for the effect of measurement error: imputation of the 'true' exposure based on specifying the sensitivity and specificity of the measured exposure (SS); direct imputation (DI) using a regression model for the predictive values; and adjustment based on a fully Bayesian analysis.
A comparison of sensitivity-specificity imputation, direct imputation and fully Bayesian analysis to adjust for exposure misclassification when validation data are unavailable
MAULE, MILENA MARIA;
2017-01-01
Abstract
Measurement error is an important source of bias in epidemiological studies. We illustrate three approaches to sensitivity analysis for the effect of measurement error: imputation of the 'true' exposure based on specifying the sensitivity and specificity of the measured exposure (SS); direct imputation (DI) using a regression model for the predictive values; and adjustment based on a fully Bayesian analysis.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
International Journal of Epidemiology 2017.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
440.84 kB
Formato
Adobe PDF
|
440.84 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
A comparison of sensitivity.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
376.57 kB
Formato
Adobe PDF
|
376.57 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.