A stochastic radiobiological model, derived from the Local Effect Model (LEM), was coupled with Monte Carlo simulations to estimate the increase in radiosensitivity produced by the interactions between photons and GNPs at nanometric scale. The model was validated using in vitro survival data of MDA-MB-231 breast cancer cells containing different concentrations of 2 nm diameter GNPs receiving different doses using 160 kVp, 6 MV, and 15 MV photons. A closed analytical formulation of the model was also derived and a study of RBE and TCP behavior was conducted. Results Results support the increased radiosensitivity due to GNP-driven dose inhomogeneities on a nanometric scale. The model is in good agreement with experimental clonogenic survival assays for 160 kVp, 6 MV, and 15 MV photons. The model suggests a RBE and TCP enhancement when lower energies and lower doses per fraction are used in the presence of GNPs. Conclusions The evolution of the local effect model was implemented to assess cellular radiosensitization in the presence of GNPs and then validated with in vitro data. The model provides a useful framework to estimate the nanoparticle-driven radiosensitivity in treatment irradiations and could be applied to real clinical treatment predictions (described in a second part of this paper)

Targeted dose enhancement in radiotherapy for breast cancer using gold nanoparticles, part 1: A radiobiological model study

FERRERO, VERONICA;VISENTIN, Sonia;
2017-01-01

Abstract

A stochastic radiobiological model, derived from the Local Effect Model (LEM), was coupled with Monte Carlo simulations to estimate the increase in radiosensitivity produced by the interactions between photons and GNPs at nanometric scale. The model was validated using in vitro survival data of MDA-MB-231 breast cancer cells containing different concentrations of 2 nm diameter GNPs receiving different doses using 160 kVp, 6 MV, and 15 MV photons. A closed analytical formulation of the model was also derived and a study of RBE and TCP behavior was conducted. Results Results support the increased radiosensitivity due to GNP-driven dose inhomogeneities on a nanometric scale. The model is in good agreement with experimental clonogenic survival assays for 160 kVp, 6 MV, and 15 MV photons. The model suggests a RBE and TCP enhancement when lower energies and lower doses per fraction are used in the presence of GNPs. Conclusions The evolution of the local effect model was implemented to assess cellular radiosensitization in the presence of GNPs and then validated with in vitro data. The model provides a useful framework to estimate the nanoparticle-driven radiosensitivity in treatment irradiations and could be applied to real clinical treatment predictions (described in a second part of this paper)
2017
1983
1992
Ferrero, Veronica; Visonà, Giovanni; Dalmasso, Federico; Gobbato, Andrea; Cerello, Piergiorgio; Strigari, Lidia; Visentin, Sonja; Attili, Andrea
File in questo prodotto:
File Dimensione Formato  
Ferrero_et_al-2017-Medical_Physics1.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 479.02 kB
Formato Adobe PDF
479.02 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1636486
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 23
social impact