The possibility to transfer methods from thermal to differential-flow modulated comprehensive two-dimensional gas chromatographic (GC×GC) platforms opens interesting perspectives for routine analysis of complex samples. Flow modulated platforms avoid the use of cryogenics, thereby simplifying laboratory operations and analyst supervision during intensive analytical sessions. This study evaluates the feasibility of transferring a fingerprinting method capable of classifying and discriminating cocoa samples based on the volatiles fraction composition according to their origin and processing steps. Previously developed principles of GC×GC method translation are applied to an original fingerprinting method, developed for a loop-type thermal modulated GC×GC-MS system, to engineer a method for a reverse-injection differential flow modulated platform (GC×2GC-MS/FID) with a dual-parallel secondary column and dual detection. Effective method translation preserves analytes elution order, 1D resolution, and 2D pattern coherence. The experimental results confirm the feasibility of translating fingerprinting method conditions while preserving the informative power of 2D peak patterns for sample classification and discrimination. Correct translation enables effective transfer of metadata (e.g., compound names and MS fragmentation patterns) by automatic template transformation and matching from the original/reference method to its translated counterpart. Although the adoption of a narrow bore (i.e. 0.1 mm dc) column in the first-dimension enabled operation under close-to-optimal conditions with the differential-flow modulation platform, due to the dual-parallel columns in the second-dimension, it resulted in lower overall method sensitivity. Nevertheless, fingerprinting accuracy was preserved and most of the key-aroma compounds and technological markers were effectively mapped, thus limiting the loss of fingerprinting information.

Advanced fingerprinting of high-quality cocoa: Challenges in transferring methods from thermal to differential-flow modulated comprehensive two dimensional gas chromatography

MAGAGNA, FEDERICO;LIBERTO, Erica;BICCHI, Carlo;CORDERO, Chiara Emilia Irma
Last
2018-01-01

Abstract

The possibility to transfer methods from thermal to differential-flow modulated comprehensive two-dimensional gas chromatographic (GC×GC) platforms opens interesting perspectives for routine analysis of complex samples. Flow modulated platforms avoid the use of cryogenics, thereby simplifying laboratory operations and analyst supervision during intensive analytical sessions. This study evaluates the feasibility of transferring a fingerprinting method capable of classifying and discriminating cocoa samples based on the volatiles fraction composition according to their origin and processing steps. Previously developed principles of GC×GC method translation are applied to an original fingerprinting method, developed for a loop-type thermal modulated GC×GC-MS system, to engineer a method for a reverse-injection differential flow modulated platform (GC×2GC-MS/FID) with a dual-parallel secondary column and dual detection. Effective method translation preserves analytes elution order, 1D resolution, and 2D pattern coherence. The experimental results confirm the feasibility of translating fingerprinting method conditions while preserving the informative power of 2D peak patterns for sample classification and discrimination. Correct translation enables effective transfer of metadata (e.g., compound names and MS fragmentation patterns) by automatic template transformation and matching from the original/reference method to its translated counterpart. Although the adoption of a narrow bore (i.e. 0.1 mm dc) column in the first-dimension enabled operation under close-to-optimal conditions with the differential-flow modulation platform, due to the dual-parallel columns in the second-dimension, it resulted in lower overall method sensitivity. Nevertheless, fingerprinting accuracy was preserved and most of the key-aroma compounds and technological markers were effectively mapped, thus limiting the loss of fingerprinting information.
2018
1536
122
136
comprehensive two-dimensional gas chromatography-mass spectrometry and flame ionization detection; reverse-inject differential flow modulation; advanced fingerprinting; Theobroma cacao; method translation; template matching functions
Magagna, Federico; Liberto, Erica; Reichenbach, Stephen E.; Tao, Qingping; Carretta, Andrea; Cobelli, Luigi; Giardina, Matthew; Bicchi, Carlo; Cordero...espandi
File in questo prodotto:
File Dimensione Formato  
Manuscript OA_4aperto.pdf

Open Access dal 09/07/2019

Descrizione: articolo principale accesso aperto
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF Visualizza/Apri
full text final.pdf

Accesso riservato

Descrizione: full text
Tipo di file: PDF EDITORIALE
Dimensione 2.73 MB
Formato Adobe PDF
2.73 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1644892
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 33
social impact