Arbuscular mycorrhizal (AM) fungi experience oxidative stress during the plant-fungal interaction, due to endogenous reactive oxygen species (ROS) produced by fungal metabolism and exogenous ROS produced by plant cells. Here, we examine the responses to H2O2 in Gigaspora margarita, an AM fungus containing the endobacterial symbiont Candidatus Glomeribacter gigasporarum (CaGg). Previous studies revealed that G. margarita with its endobacterium produces more ATP and has higher respiratory activity than a cured line that lacks the endobacterium. This higher bioenergetic potential leads to higher production of ROS and to a higher ROS-detoxifying capacity, suggesting a direct or indirect role of the endobacterium in modulating fungal antioxidant responses. To test the hypothesis that the fungal-endobacterial symbiosis may enhance the fitness of the AM fungus in the presence of oxidative stress, we treated the fungus with a sublethal concentration of H2O2 and performed RNA-seq analysis. Our results demonstrate that (i) irrespective of the endobacterium presence, G. margarita faces oxidative stress by activating multiple metabolic processes (methionine oxidation, sulfur uptake, the pentose phosphate pathway, activation of ROS-scavenger genes); (ii) in the presence of its endobacterium, G. margarita upregulates some metabolic pathways, like chromatin status modifications and iron metabolism; and (iii) contrary to our hypothesis, the cured line responds to H2O2 by activating the transcription of specific ROS scavengers. We confirmed the RNA-seq findings by measuring the glutathione and ascorbate concentration, which was the same in both lines after H2O2 treatment. We conclude that both fungal lines may face oxidative stress, but they activate alternative strategies.

Gigaspora margarita with and without its endobacterium shows adaptive responses to oxidative stress

VENICE, FRANCESCO;NOVERO, Mara;SALVIOLI DI FOSSALUNGA, Alessandra;BONFANTE, Paola
2017-01-01

Abstract

Arbuscular mycorrhizal (AM) fungi experience oxidative stress during the plant-fungal interaction, due to endogenous reactive oxygen species (ROS) produced by fungal metabolism and exogenous ROS produced by plant cells. Here, we examine the responses to H2O2 in Gigaspora margarita, an AM fungus containing the endobacterial symbiont Candidatus Glomeribacter gigasporarum (CaGg). Previous studies revealed that G. margarita with its endobacterium produces more ATP and has higher respiratory activity than a cured line that lacks the endobacterium. This higher bioenergetic potential leads to higher production of ROS and to a higher ROS-detoxifying capacity, suggesting a direct or indirect role of the endobacterium in modulating fungal antioxidant responses. To test the hypothesis that the fungal-endobacterial symbiosis may enhance the fitness of the AM fungus in the presence of oxidative stress, we treated the fungus with a sublethal concentration of H2O2 and performed RNA-seq analysis. Our results demonstrate that (i) irrespective of the endobacterium presence, G. margarita faces oxidative stress by activating multiple metabolic processes (methionine oxidation, sulfur uptake, the pentose phosphate pathway, activation of ROS-scavenger genes); (ii) in the presence of its endobacterium, G. margarita upregulates some metabolic pathways, like chromatin status modifications and iron metabolism; and (iii) contrary to our hypothesis, the cured line responds to H2O2 by activating the transcription of specific ROS scavengers. We confirmed the RNA-seq findings by measuring the glutathione and ascorbate concentration, which was the same in both lines after H2O2 treatment. We conclude that both fungal lines may face oxidative stress, but they activate alternative strategies.
2017
27
8
747
759
https://link.springer.com/article/10.1007%2Fs00572-017-0790-z
Arbuscular mycorrhizal fungi; Endobacteria; Oxidative stress; RNA-seq; Reactive oxygen species
Venice, Francesco; de Pinto, Maria Concetta; Novero, Mara; Ghignone, Stefano; SALVIOLI DI FOSSALUNGA, Alessandra; Bonfante, Paola
File in questo prodotto:
File Dimensione Formato  
Venice et al resubmission_4aperto.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 471.66 kB
Formato Adobe PDF
471.66 kB Adobe PDF Visualizza/Apri
Venice et al.pdf

Accesso riservato

Descrizione: Venice et al_Pdf Editoriale
Tipo di file: PDF EDITORIALE
Dimensione 1.99 MB
Formato Adobe PDF
1.99 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1645707
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 16
social impact