Within the pattern of volatiles released by food products (volatilome), potent odorants are bio-active compounds that trigger aroma perception by activating a complex array of odor receptors (ORs) in the regio olfactoria. Their informative role is fundamental to select optimal post-harvest and storage conditions and preserve food sensory quality. This study addresses the volatile metabolome from high-quality hazelnuts (Corylus avellana L.) from the Ordu region (Turkey) and Tonda Romana from Italy, and investigates its evolution throughout the production chain (post-harvest, industrial storage, roasting) to find functional correlations between technological strategies and product quality. The volatile metabolome is analyzed by headspace solid-phase microextration combined with comprehensive two-dimensional gas chromatography and mass spectrometry. Dedicated pattern recognition, based on 2D data (targeted fingerprinting), is used to mine analytical outputs, while principal component analysis (PCA), Fisher ratio, hierarchical clustering, and analysis of variance are used to find decision makers among the most informative chemicals. Low-temperature drying (18-20 °C) has a decisive effect on quality; it correlates negatively with bacteria and mold metabolic activity, nut viability, and lipid oxidation products (2-methyl-1-propanol, 3-methyl-1-butanol, 2-ethyl-1-hexanol, 2-octanol, 1-octen-3-ol, hexanal, octanal and (E)-2-heptanal). Protective atmosphere storage (99% N2-1% O2) effectively limits lipid oxidation for 9-12 months after nut harvest. The combination of optimal drying and storage preserves the aroma potential; after roasting at different shelf-lives, key odorants responsible for malty and buttery (2- and 3-methylbutanal, 2,3-butanedione and 2,3-pentanedione), earthy (methylpyrazine, 2-ethyl-5-methyl pyrazine and 3-ethyl-2,5-dimethyl pyrazine) and caramel-like and musty notes (2,5-dimethyl-4-hydroxy-3(2H)-furanone - furaneol and acetyl pyrrole) show no significant variation. Graphical abstract Comprehensive two-dimensional gas chromatography (GC × GC) coupled with mass spectrometric detection captures hazelnut volatiles signatures while advanced fingerprinting approaches based on pattern recognition enable access to a higher level of information.

Evolution of potent odorants within the volatile metabolome of high-quality hazelnuts (Corylus avellana L.): evaluation by comprehensive two-dimensional gas chromatography coupled with mass spectrometry

Rosso, Marta Cialiè;Liberto, Erica;Fontana, Mauro;Bicchi, Carlo;Cordero, Chiara
Last
2018-01-01

Abstract

Within the pattern of volatiles released by food products (volatilome), potent odorants are bio-active compounds that trigger aroma perception by activating a complex array of odor receptors (ORs) in the regio olfactoria. Their informative role is fundamental to select optimal post-harvest and storage conditions and preserve food sensory quality. This study addresses the volatile metabolome from high-quality hazelnuts (Corylus avellana L.) from the Ordu region (Turkey) and Tonda Romana from Italy, and investigates its evolution throughout the production chain (post-harvest, industrial storage, roasting) to find functional correlations between technological strategies and product quality. The volatile metabolome is analyzed by headspace solid-phase microextration combined with comprehensive two-dimensional gas chromatography and mass spectrometry. Dedicated pattern recognition, based on 2D data (targeted fingerprinting), is used to mine analytical outputs, while principal component analysis (PCA), Fisher ratio, hierarchical clustering, and analysis of variance are used to find decision makers among the most informative chemicals. Low-temperature drying (18-20 °C) has a decisive effect on quality; it correlates negatively with bacteria and mold metabolic activity, nut viability, and lipid oxidation products (2-methyl-1-propanol, 3-methyl-1-butanol, 2-ethyl-1-hexanol, 2-octanol, 1-octen-3-ol, hexanal, octanal and (E)-2-heptanal). Protective atmosphere storage (99% N2-1% O2) effectively limits lipid oxidation for 9-12 months after nut harvest. The combination of optimal drying and storage preserves the aroma potential; after roasting at different shelf-lives, key odorants responsible for malty and buttery (2- and 3-methylbutanal, 2,3-butanedione and 2,3-pentanedione), earthy (methylpyrazine, 2-ethyl-5-methyl pyrazine and 3-ethyl-2,5-dimethyl pyrazine) and caramel-like and musty notes (2,5-dimethyl-4-hydroxy-3(2H)-furanone - furaneol and acetyl pyrrole) show no significant variation. Graphical abstract Comprehensive two-dimensional gas chromatography (GC × GC) coupled with mass spectrometric detection captures hazelnut volatiles signatures while advanced fingerprinting approaches based on pattern recognition enable access to a higher level of information.
2018
480
15
3491
3506
Comprehensive two-dimensional gas chromatography; Hazelnuts Corylus avellana L.; Post-harvest practices; Potent odorants; Storage conditions; Volatile metabolome
Marta Cialiè, Rosso; Liberto, Erica; Spigolon, Nicola; Fontana, Mauro; Somenzi, Marco; Bicchi, Carlo; Cordero, Chiara
File in questo prodotto:
File Dimensione Formato  
OA_Potent odorants.pdf

Open Access dal 10/01/2019

Descrizione: OA_Potent odorants
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 2.44 MB
Formato Adobe PDF
2.44 MB Adobe PDF Visualizza/Apri
full-text final.pdf

Accesso riservato

Descrizione: full text final
Tipo di file: PDF EDITORIALE
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1657544
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 35
social impact