Molecular alterations in genes involved in DNA mismatch repair (MMR) promote cancer initiation and foster tumour progression. Cancers deficient in MMR frequently show favourable prognosis and indolent progression. The functional basis of the clinical outcome of patients with tumours that are deficient in MMR is not clear. Here we genetically inactivate MutL homologue 1 (MLH1) in colorectal, breast and pancreatic mouse cancer cells. The growth of MMR-deficient cells was comparable to their proficient counterparts in vitro and on transplantation in immunocompromised mice. By contrast, MMR-deficient cancer cells grew poorly when transplanted in syngeneic mice. The inactivation of MMR increased the mutational burden and led to dynamic mutational profiles, which resulted in the persistent renewal of neoantigens in vitro and in vivo, whereas MMR-proficient cells exhibited stable mutational load and neoantigen profiles over time. Immune surveillance improved when cancer cells, in which MLH1 had been inactivated, accumulated neoantigens for several generations. When restricted to a clonal population, the dynamic generation of neoantigens driven by MMR further increased immune surveillance. Inactivation of MMR, driven by acquired resistance to the clinical agent temozolomide, increased mutational load, promoted continuous renewal of neoantigens in human colorectal cancers and triggered immune surveillance in mouse models. These results suggest that targeting DNA repair processes can increase the burden of neoantigens in tumour cells; this has the potential to be exploited in therapeutic approaches.

Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth

Germano, Giovanni
First
;
Rospo, Giuseppe;Barault, Ludovic;Magri, Alessandro;Maione, Federica;Russo, Mariangela;Crisafulli, Giovanni;Lerda, Giulia;Siravegna, Giulia;Giraudo, Enrico;Di Nicolantonio, Federica;Bardelli, Alberto
Last
2017-01-01

Abstract

Molecular alterations in genes involved in DNA mismatch repair (MMR) promote cancer initiation and foster tumour progression. Cancers deficient in MMR frequently show favourable prognosis and indolent progression. The functional basis of the clinical outcome of patients with tumours that are deficient in MMR is not clear. Here we genetically inactivate MutL homologue 1 (MLH1) in colorectal, breast and pancreatic mouse cancer cells. The growth of MMR-deficient cells was comparable to their proficient counterparts in vitro and on transplantation in immunocompromised mice. By contrast, MMR-deficient cancer cells grew poorly when transplanted in syngeneic mice. The inactivation of MMR increased the mutational burden and led to dynamic mutational profiles, which resulted in the persistent renewal of neoantigens in vitro and in vivo, whereas MMR-proficient cells exhibited stable mutational load and neoantigen profiles over time. Immune surveillance improved when cancer cells, in which MLH1 had been inactivated, accumulated neoantigens for several generations. When restricted to a clonal population, the dynamic generation of neoantigens driven by MMR further increased immune surveillance. Inactivation of MMR, driven by acquired resistance to the clinical agent temozolomide, increased mutational load, promoted continuous renewal of neoantigens in human colorectal cancers and triggered immune surveillance in mouse models. These results suggest that targeting DNA repair processes can increase the burden of neoantigens in tumour cells; this has the potential to be exploited in therapeutic approaches.
2017
552
7683
116
120
https://www.nature.com/articles/nature24673
Multidisciplinary, cancer, cancer genetics
Germano, Giovanni; Lamba, Simona; Rospo, Giuseppe; Barault, Ludovic; Magri, Alessandro; Maione, Federica; Russo, Mariangela; Crisafulli, Giovanni; Bartolini, Alice; Lerda, Giulia; Siravegna, Giulia; Mussolin, Benedetta; Frapolli, Roberta; Montone, Monica; Morano, Federica; De Braud, Filippo; Amirouchene-Angelozzi, Nabil; Marsoni, Silvia; D'Incalci, Maurizio; Orlandi, Armando; Giraudo, Enrico; Sartore-Bianchi, Andrea; Siena, Salvatore; Pietrantonio, Filippo; Di Nicolantonio, Federica; Bardelli, Alberto
File in questo prodotto:
File Dimensione Formato  
2017-Inactivation of DNA.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 3.93 MB
Formato Adobe PDF
3.93 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2017-Inactivation of DNA_postprint_4aperto.pdf

Open Access dal 02/07/2018

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 6.59 MB
Formato Adobe PDF
6.59 MB Adobe PDF Visualizza/Apri
nature24673.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 5.09 MB
Formato Adobe PDF
5.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1660203
Citazioni
  • ???jsp.display-item.citation.pmc??? 273
  • Scopus 426
  • ???jsp.display-item.citation.isi??? 412
social impact