Given positive integers $a_1,\ldots,a_k$, we prove that the set of primes $p$ such that \mbox{$p \not\equiv 1 \bmod{a_i}$} for $i=1,\ldots,k$ admits asymptotic density relative to the set of all primes which is at least $\prod_{i=1}^k \left(1-\frac{1}{\varphi(a_i)}\right)$, where $\varphi$ is the Euler totient function. This result is similar to the one of Heilbronn and Rohrbach, which says that the set of positive integer $n$ such that $n \not\equiv 0 \bmod a_i$ for $i=1,\ldots,k$ admits asymptotic density which is at least $\prod_{i=1}^k \left(1-\frac{1}{a_i}\right)$.
A note on primes in certain residue classes
LEONETTI, Paolo;Sanna, Carlo
2018-01-01
Abstract
Given positive integers $a_1,\ldots,a_k$, we prove that the set of primes $p$ such that \mbox{$p \not\equiv 1 \bmod{a_i}$} for $i=1,\ldots,k$ admits asymptotic density relative to the set of all primes which is at least $\prod_{i=1}^k \left(1-\frac{1}{\varphi(a_i)}\right)$, where $\varphi$ is the Euler totient function. This result is similar to the one of Heilbronn and Rohrbach, which says that the set of positive integer $n$ such that $n \not\equiv 0 \bmod a_i$ for $i=1,\ldots,k$ admits asymptotic density which is at least $\prod_{i=1}^k \left(1-\frac{1}{a_i}\right)$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
LeoSan20180306.pdf
Open Access dal 11/09/2019
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
262.12 kB
Formato
Adobe PDF
|
262.12 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.