We consider the spaces of ultradifferentiable functions $\mathcal{S}_\omega$ as introduced by Björck (and its dual $\mathcal{S}^\prime_\omega$) and we use time-frequency analysis to define a suitable wave front set in this setting and obtain several applications: global regularity properties of pseudodifferential operators of infinite order and the micro-pseudolocal behaviour of partial differential operators with polynomial coefficients and of localization operators with symbols of exponential growth. Moreover, we prove that the new wave front set, defined in terms of the Gabor transform, can be described using only Gabor frames. Finally, some examples show the convenience of the use ofweight functions to describe more precisely the global regularity of (ultra)distributions.

The Gabor wave front set in spaces of ultradifferentiable functions

Alessandro Oliaro
2019-01-01

Abstract

We consider the spaces of ultradifferentiable functions $\mathcal{S}_\omega$ as introduced by Björck (and its dual $\mathcal{S}^\prime_\omega$) and we use time-frequency analysis to define a suitable wave front set in this setting and obtain several applications: global regularity properties of pseudodifferential operators of infinite order and the micro-pseudolocal behaviour of partial differential operators with polynomial coefficients and of localization operators with symbols of exponential growth. Moreover, we prove that the new wave front set, defined in terms of the Gabor transform, can be described using only Gabor frames. Finally, some examples show the convenience of the use ofweight functions to describe more precisely the global regularity of (ultra)distributions.
2019
188
2
199
246
https://link.springer.com/article/10.1007/s00605-018-1242-3
https://arxiv.org/abs/1706.08413
Gabor wave front set, Weighted Schwartz classes, Short-time Fourier transform, Gabor frames
Chiara Boiti, David Jornet, Alessandro Oliaro
File in questo prodotto:
File Dimensione Formato  
Boiti_Jornet_Oliaro_Gabor_wavefrontset_revised.pdf

Open Access dal 01/03/2020

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 266.09 kB
Formato Adobe PDF
266.09 kB Adobe PDF Visualizza/Apri
Boiti2019_Article_TheGaborWaveFrontSetInSpacesOf.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 618.82 kB
Formato Adobe PDF
618.82 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1682765
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 13
social impact