The development of a new generation of ultra-sensitive sensors for analytical and bio-diagnostic devices requires a strong signal in front of very small quantity of analyte, often present in complex and interfering matrix. Taking advantage of peculiar plasmonic properties of nanoporous gold (NPG), a promising sensor for selective detection of Human Serum Albumin (HSA), a proof-of-concept bioanalyte, was prepared and tested in a conventional micro-Raman spectrometer using Surface Enhanced Raman Spectroscopy (SERS). NPG was synthesized by chemical de-alloying of an amorphous precursor, Au20Cu48Ag7Pd5Si20, starting from melt spun ribbons. A fully de-alloyed ribbon with ligaments of about 60 nm was obtained after 4 h of de-alloying at 70 °C and 10M HNO3+0.5M HF. This material is self-standing, mechanically resistant, and suitable for wide range of applications. At this stage, NPG is SERS-active toward several molecules, including pyridine, bi-pyridine, and rhodamine at very low concentration. In order to obtain the selective binding properties required to detect molecules in bio-diagnostic applications, immuno-functionalization of NPG was carried out by using an anti-HSA antibody (Ab-anti-HSA) covalently grafted on gold ligaments via the 4-aminothiophenol (4ATP) Raman probe, yielding the SERS-active nanohybrid NPG-4ATP-Ab. SERS signal recorded at increasing HSA concentrations was used for the acquisition of SERS maps and a chemometric regression model allowed to calibrate the sensor. In the best experimental conditions, we were able to get quantitative analysis of HSA at ultra-low concentrations (0.1 ng/l) with SERS. The methodology proposed in this paper has to be considered a major step toward a calibrated device for ultra-sensitive detection of biomolecules by SERS detection
Functionalized nanoporous gold as a new biosensor platform for ultra-low quantitative detection of human serum albumin
Scaglione, F.;Alladio, E.;Damin, A.;Turci, F.;Baggiani, C.;Giovannoli, C.;Bordiga, S.;Battezzati, L.;Rizzi, P.
2019-01-01
Abstract
The development of a new generation of ultra-sensitive sensors for analytical and bio-diagnostic devices requires a strong signal in front of very small quantity of analyte, often present in complex and interfering matrix. Taking advantage of peculiar plasmonic properties of nanoporous gold (NPG), a promising sensor for selective detection of Human Serum Albumin (HSA), a proof-of-concept bioanalyte, was prepared and tested in a conventional micro-Raman spectrometer using Surface Enhanced Raman Spectroscopy (SERS). NPG was synthesized by chemical de-alloying of an amorphous precursor, Au20Cu48Ag7Pd5Si20, starting from melt spun ribbons. A fully de-alloyed ribbon with ligaments of about 60 nm was obtained after 4 h of de-alloying at 70 °C and 10M HNO3+0.5M HF. This material is self-standing, mechanically resistant, and suitable for wide range of applications. At this stage, NPG is SERS-active toward several molecules, including pyridine, bi-pyridine, and rhodamine at very low concentration. In order to obtain the selective binding properties required to detect molecules in bio-diagnostic applications, immuno-functionalization of NPG was carried out by using an anti-HSA antibody (Ab-anti-HSA) covalently grafted on gold ligaments via the 4-aminothiophenol (4ATP) Raman probe, yielding the SERS-active nanohybrid NPG-4ATP-Ab. SERS signal recorded at increasing HSA concentrations was used for the acquisition of SERS maps and a chemometric regression model allowed to calibrate the sensor. In the best experimental conditions, we were able to get quantitative analysis of HSA at ultra-low concentrations (0.1 ng/l) with SERS. The methodology proposed in this paper has to be considered a major step toward a calibrated device for ultra-sensitive detection of biomolecules by SERS detectionFile | Dimensione | Formato | |
---|---|---|---|
SNB-D-18-05491R2.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
1.8 MB
Formato
Adobe PDF
|
1.8 MB | Adobe PDF | Visualizza/Apri |
Scaglione F._Sensors And Actuators B._2019.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
6.58 MB
Formato
Adobe PDF
|
6.58 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.