We study the local structure and the regularity of free boundaries of segregated minimal configurations involving the square root of the laplacian. We develop an improvement of flatness theory and, as a consequence of this and Almgren’s monotonicity formula, we obtain partial regularity (up to a small dimensional set) of the nodal set, thus extending the known results in Caffarelli and Lin (J Am Math Soc 21(3):847–862, 2008) and Tavares et al. (Calc Var Partial Differ Equ 45(3–4):273–317, 2012) for the standard diffusion to some anomalous case.

Segregated configurations involving the square root of the laplacian and their free boundaries

Terracini S.
2019-01-01

Abstract

We study the local structure and the regularity of free boundaries of segregated minimal configurations involving the square root of the laplacian. We develop an improvement of flatness theory and, as a consequence of this and Almgren’s monotonicity formula, we obtain partial regularity (up to a small dimensional set) of the nodal set, thus extending the known results in Caffarelli and Lin (J Am Math Soc 21(3):847–862, 2008) and Tavares et al. (Calc Var Partial Differ Equ 45(3–4):273–317, 2012) for the standard diffusion to some anomalous case.
2019
58
3
1
42
http://link.springer-ny.com/link/service/journals/00526/index.htm
https://arxiv.org/abs/1810.01932
Free boundary, fractional diffusion, segregation
De Silva D.; Terracini S.
File in questo prodotto:
File Dimensione Formato  
thin2phase_corrected.pdf

Open Access dal 06/07/2020

Descrizione: Articolo
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 657.91 kB
Formato Adobe PDF
657.91 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1705346
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact