We develop real Paley-Wiener theorems for classes $mathcal{S}_omega$ of ultradifferentiable functions and related $L_{p}$-spaces in the spirit of Bang and Andersen for the Schwartz class. We introduce results of this type for the so-called Gabor transform and give a full characterization in terms of Fourier and Wigner transforms for several variables of a Paley-Wiener theorem in this general setting, which is new in the literature. We also analyze this type of results when the support of the function is not compact using polynomials. Some examples are given.

Real Paley-Wiener theorems in spaces of ultradifferentiable functions

Alessandro Oliaro
2020-01-01

Abstract

We develop real Paley-Wiener theorems for classes $mathcal{S}_omega$ of ultradifferentiable functions and related $L_{p}$-spaces in the spirit of Bang and Andersen for the Schwartz class. We introduce results of this type for the so-called Gabor transform and give a full characterization in terms of Fourier and Wigner transforms for several variables of a Paley-Wiener theorem in this general setting, which is new in the literature. We also analyze this type of results when the support of the function is not compact using polynomials. Some examples are given.
2020
278
1
45
https://arxiv.org/abs/1902.02745
https://www.sciencedirect.com/science/article/pii/S0022123619303428
Real Paley-Wiener theorems, weighted Schwartz classes, short-time Fourier transform, Wigner transform.
Chiara Boiti, David Jornet, Alessandro Oliaro
File in questo prodotto:
File Dimensione Formato  
Boiti-Jornet-Oliaro-realPW-revised.pdf

Open Access dal 10/10/2022

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 494.14 kB
Formato Adobe PDF
494.14 kB Adobe PDF Visualizza/Apri
Real Paley-Wiener theorems in spaces of ultradifferentiable functions - main.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 35.86 MB
Formato Adobe PDF
35.86 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Boiti Jornet Oliaro JFA.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 629.38 kB
Formato Adobe PDF
629.38 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1713252
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 15
social impact