In this paper, we build on a previously developed notion of ‘learning as Making’ to examine mathematics thinking and learning in a highly transformative and technological Making environment: one that involves a handheld 3D printing technology which enables 3D models to be created instantly via one’s moving hand. In particular, we present two examples of Maker-centred lessons for teaching and learning of primary mathematics. In these lessons, the students actively constructed artefacts with 3D Printing Pens while engaging in inquiry-based learning activities, where the target concepts were properties of prisms and cross-sections at the primary 5 (age 10–11) and primary 6 (age 11–12) levels respectively. We use diffractive analysis to capture the fine details in students’ body-material interactions while engaging in the tasks with or without the 3D Printing Pens during the lessons. Through the lens of Making as a material act of creation and seeking to update Papert’s constructionist view of learning, we propose to rethink Making in school mathematics according to a four-fold characterisation: Making is co-constructing meanings, Making is mathematising, Making is assembling with technology and Making is inventing. We discuss our contribution towards advancing a materialist perspective of learning mathematics and implications for a ‘learning as Making’ pedagogy and curriculum.
Towards a Materialist Vision of ‘Learning as Making’: the Case of 3D Printing Pens in School Mathematics
Ferrara F.
2020-01-01
Abstract
In this paper, we build on a previously developed notion of ‘learning as Making’ to examine mathematics thinking and learning in a highly transformative and technological Making environment: one that involves a handheld 3D printing technology which enables 3D models to be created instantly via one’s moving hand. In particular, we present two examples of Maker-centred lessons for teaching and learning of primary mathematics. In these lessons, the students actively constructed artefacts with 3D Printing Pens while engaging in inquiry-based learning activities, where the target concepts were properties of prisms and cross-sections at the primary 5 (age 10–11) and primary 6 (age 11–12) levels respectively. We use diffractive analysis to capture the fine details in students’ body-material interactions while engaging in the tasks with or without the 3D Printing Pens during the lessons. Through the lens of Making as a material act of creation and seeking to update Papert’s constructionist view of learning, we propose to rethink Making in school mathematics according to a four-fold characterisation: Making is co-constructing meanings, Making is mathematising, Making is assembling with technology and Making is inventing. We discuss our contribution towards advancing a materialist perspective of learning mathematics and implications for a ‘learning as Making’ pedagogy and curriculum.File | Dimensione | Formato | |
---|---|---|---|
Ng-Ferrara2020_Article_TowardsAMaterialistVisionOfLearning.pdf
Accesso riservato
Descrizione: Articolo principale
Tipo di file:
PDF EDITORIALE
Dimensione
6.87 MB
Formato
Adobe PDF
|
6.87 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Ng-Ferrara2020_oa.pdf
Accesso aperto
Descrizione: Articolo principale
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
7.67 MB
Formato
Adobe PDF
|
7.67 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.