In order to approximate continuous functions on [0 , +∞) , we consider a Lagrange–Hermite polynomial, interpolating a finite section of the function at the zeros of some orthogonal polynomials and, with its first (r- 1) derivatives, at the point 0. We give necessary and sufficient conditions on the weights for the uniform boundedness of the related operator. Moreover, we prove optimal estimates for the error of this process in the weighted Lp and uniform metric.

Lagrange--Hermite interpolation on the real semiaxis

Notarangelo I.;
2016-01-01

Abstract

In order to approximate continuous functions on [0 , +∞) , we consider a Lagrange–Hermite polynomial, interpolating a finite section of the function at the zeros of some orthogonal polynomials and, with its first (r- 1) derivatives, at the point 0. We give necessary and sufficient conditions on the weights for the uniform boundedness of the related operator. Moreover, we prove optimal estimates for the error of this process in the weighted Lp and uniform metric.
2016
53
2
235
261
https://link.springer.com/article/10.1007/s10092-015-0147-y
https://link.springer.com/journal/10092
Approximation by algebraic polynomials; Generalized Laguerre weights; Hermite–Lagrange interpolation; Orthogonal polynomials; Real semiaxis
Mastroianni G.; Notarangelo I.; Pastore P.
File in questo prodotto:
File Dimensione Formato  
MNP-Calc-2016.pdf

Accesso riservato

Descrizione: articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 423.25 kB
Formato Adobe PDF
423.25 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
MNP-Calc-2016-uniTO.pdf

Open Access dal 17/07/2016

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 473.69 kB
Formato Adobe PDF
473.69 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1726698
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact