In order to approximate continuous functions on [0 , +∞) , we consider a Lagrange–Hermite polynomial, interpolating a finite section of the function at the zeros of some orthogonal polynomials and, with its first (r- 1) derivatives, at the point 0. We give necessary and sufficient conditions on the weights for the uniform boundedness of the related operator. Moreover, we prove optimal estimates for the error of this process in the weighted Lp and uniform metric.
Lagrange--Hermite interpolation on the real semiaxis
Notarangelo I.;
2016-01-01
Abstract
In order to approximate continuous functions on [0 , +∞) , we consider a Lagrange–Hermite polynomial, interpolating a finite section of the function at the zeros of some orthogonal polynomials and, with its first (r- 1) derivatives, at the point 0. We give necessary and sufficient conditions on the weights for the uniform boundedness of the related operator. Moreover, we prove optimal estimates for the error of this process in the weighted Lp and uniform metric.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
MNP-Calc-2016.pdf
Accesso riservato
Descrizione: articolo principale
Tipo di file:
PDF EDITORIALE
Dimensione
423.25 kB
Formato
Adobe PDF
|
423.25 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
MNP-Calc-2016-uniTO.pdf
Open Access dal 17/07/2016
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
473.69 kB
Formato
Adobe PDF
|
473.69 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.