The paper deals with weighted polynomial approximation for functions defined on $(-1,1)$, which can grow exponentially both at $-1$ and at $1$. We summarize recent results on function spaces with new moduli of smoothness, estimates for the best approximation, Lagrange interpolation, Fourier sums and Gaussian rules with respect to weights of the form $w(x)=(1-x^2)^eta exp{-(1-x^2)^{-alpha}}$.

Polynomial approximation with Pollaczek-type weights. A survey

NOTARANGELO, Incoronata
2020-01-01

Abstract

The paper deals with weighted polynomial approximation for functions defined on $(-1,1)$, which can grow exponentially both at $-1$ and at $1$. We summarize recent results on function spaces with new moduli of smoothness, estimates for the best approximation, Lagrange interpolation, Fourier sums and Gaussian rules with respect to weights of the form $w(x)=(1-x^2)^eta exp{-(1-x^2)^{-alpha}}$.
2020
149
83
98
https://www.sciencedirect.com/science/article/abs/pii/S0168927419301618
https://www.sciencedirect.com/journal/applied-numerical-mathematics
Weighted polynomial approximation; orthogonal polynomials; Lagrange interpolation at Pollaczek-type zeros; Fourier sums w.r.t. Pollaczek-type polynomials; Gaussian quadrature rules w.r.t. exponential weights; bounded intervals.
Mastroianni G.; Notarangelo I.
File in questo prodotto:
File Dimensione Formato  
MN-ANM2020.pdf

Accesso riservato

Descrizione: articolo principale
Tipo di file: PDF EDITORIALE
Dimensione 481.2 kB
Formato Adobe PDF
481.2 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
MN-ANM-2020-uniTO.pdf

Open Access dal 15/06/2021

Descrizione: post print
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 535.96 kB
Formato Adobe PDF
535.96 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1730516
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact