The paper deals with weighted polynomial approximation for functions defined on $(-1,1)$, which can grow exponentially both at $-1$ and at $1$. We summarize recent results on function spaces with new moduli of smoothness, estimates for the best approximation, Lagrange interpolation, Fourier sums and Gaussian rules with respect to weights of the form $w(x)=(1-x^2)^eta exp{-(1-x^2)^{-alpha}}$.
Polynomial approximation with Pollaczek-type weights. A survey
NOTARANGELO, Incoronata
2020-01-01
Abstract
The paper deals with weighted polynomial approximation for functions defined on $(-1,1)$, which can grow exponentially both at $-1$ and at $1$. We summarize recent results on function spaces with new moduli of smoothness, estimates for the best approximation, Lagrange interpolation, Fourier sums and Gaussian rules with respect to weights of the form $w(x)=(1-x^2)^eta exp{-(1-x^2)^{-alpha}}$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
MN-ANM2020.pdf
Accesso riservato
Descrizione: articolo principale
Tipo di file:
PDF EDITORIALE
Dimensione
481.2 kB
Formato
Adobe PDF
|
481.2 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
MN-ANM-2020-uniTO.pdf
Open Access dal 15/06/2021
Descrizione: post print
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
535.96 kB
Formato
Adobe PDF
|
535.96 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.